Snowball Solar System

This work in progress addresses unresolved and ‘problem’ areas in geology and astrophysics:

  • Galaxy, star, planet, and planetesimal formation;
  • The nature and formation of cold dark matter in galactic halos and its effect on the solar system;
  • Aqueous differentiation of comets and dwarf planets due to planetesimal collisions or binary spiral-in mergers;
  • Plate tectonics, the granite problem, the mantled gneiss-dome problem, and the dolomite problem; and
  • Icy-body impacts vs. rocky-iron impacts, endothermic chemical reactions in impacts,

 PLANETS, MOONS, DWARF PLANETS AND PLANETESIMALS

Suggested exponential-rate of stellar core collapse between the Sun and our former binary-Companion, causing the solar system barycenter (SSB) to sweep through the Kuiper belt and scattered disc, perturbing planetesimals into the inner solar system and causing the late heavy bombardment (LHB): - 35.8 AU at 4,456 Ma - 39.4 AU at 4,220 Ma, 1st pulse of LHB by Plutinos - 43 AU at 3,900 Ma, 2nd pulse of LHB by Cubewanos - 63 AU at 2,500 Ma, entering the scattered disc and ushering in the Proterozoic Eon - Binary-Companion merges in an asymmetrical binary spiral-in merger, 1,849 AU at 542 Ma, giving the Companion escape velocity from the Sun

Suggested exponential-rate of stellar core collapse between the Sun and our former binary-Companion, causing the solar system barycenter (SSB) to sweep through the Kuiper belt and scattered disc, perturbing planetesimals into the inner solar system and causing the late heavy bombardment (LHB):
- 35.8 AU at 4,456 Ma
- 39.4 AU at 4,220 Ma, 1st pulse of LHB by Plutinos
- 43 AU at 3,900 Ma, 2nd pulse of LHB by Cubewanos
- 63 AU at 2,500 Ma, entering the scattered disc and ushering in the Proterozoic Eon
- Binary-Companion merges in an asymmetrical binary spiral-in merger, 1,849 AU at 542 Ma, giving the Companion escape velocity from the Sun

Special Definitions:

– Aqueous Differentiation:
When binary planetesimals formed by gravitational instability (GI) spiral in and merge to form contact binaries, the dissipated orbital energy may cause cause internal melting of water ice (aqueous differentiation), creating salt-water oceans in contact-binary cores. Aqueous differentiation also occurs in planetesimal collisions. In addition to melting, aqueous differentiation also implies precipitation of mineral grains which may form sedimentary cores, and sedimentary cores may undergo lithification and even metamorphosis if the salt-water ocean freezes solid, building pressure during phase-change expansion of water ice.

– Asteroids:
High-density volatile-depleted planetesmials ‘condensed’ by GI from Type II, solar-merger, debris disk material at a distance just beyond the Sun’s magnetic corotation radius at about Mercury’s orbit. Asteroids may have thermally differentiated (silicate melting, forming iron-nickel cores) due to short-lived r-process radionuclides formed in the spiral-in solar merger at 4,567 Ma. The largest asteroids, including 4 Vesta, may be ‘hybrid accretions’ of smaller asteroids with the planet Mercury as the largest hybrid-accretion asteroid. Then orbit clearing by the terrestrial planets evaporated asteroids into Jupiter’s inner resonances.

– Chondrites:
Planetesimals condensed by GI that have not thermally differentiated due to late formation without live radionuclides. Chondrites typically contain chondrules which may have formed during super-intense solar flares during the Sun’s suggested 3 million year flare-star phase following its binary spiral-in merger. CI chondrites without chondrules may have condensed from the protoplanetary disk prior to the binary solar merger at 4,567 Ma and may be outer solar system comets or their inner solar system equivalents.

– Close Binary:
‘Hard’ close-binary pairs (planetesimals, planets, moons or stars) tend to spiral in due to external perturbation, becoming progressively harder over time, sometimes merging to form rapidly-rotating solitary objects.

– Comets:
Circa 1–20 km planetesimals condensed by GI prior to 4,567 Ma from the protoplanetary disk. A suggested former binary brown-dwarf Companion may have scattered or shepherded them into the inner Oort cloud (IOC). Comets are assumedly highly oxidized with little volatile depletion, having condensed at very low temperatures, perhaps while still within our birth Bok globule.

Companion to the Sun:
Our protostar is suggested to have fragmented 3 times to form two close-binary pairs, binary-Sun and binary-Companion. Core collapse is suggested to have caused binary-Sun to merge at 4,567 Ma and binary-Companion to have merged at 542 Ma. The suggested asymmetrical merger of our former binary-Companion gave the Companion escape velocity from the Sun.

– Core Collapse:
Orbit clearing is a form of core collapse whereby high-mass planets tend to clear their orbits of lower-mass planetesimals by ‘evaporating’ them into higher orbits. Similarly, close-binary stars may evaporate smaller companion stars into higher wide-binary orbits, transferring energy and angular momentum from more-massive hard close-binary orbits to increasing the soft wide-binary separation.

– FHSC:
(First hydrostatic core) is a step in the process of Jeans instability which forms following an initial, nearly-isothermal contraction as the material in the center becomes opaque and no longer freely radiates away its heat and contraction becomes approximately adiabatic. When gas pressure in the center balances the overlying weight, a FHSC is said to be forming or to have formed. Protostars, proto-planets, proto-moons, and proto-planetesimals(?) formed by GI may for FHSCs.

– Fragmentation/Bifurcation:
The earliest stage of Jeans instability, during the formation of a FHSC, may isolate outer layers with excess angular momentum which may gravitationally clump within their own Roche sphere to form a nascent binary proto-pair orbiting a common barycenter. Subsequent fragmentation may occur to the smaller secondary member of the proto-pair which has higher specific angular momentum during the formation of its own FHSC. Fragmentation may occur in any-sized objects undergoing GI, from 1 km comets to moons, planets and stars.

– GI:
(Gravitational instability) whereby gas, dust and ice gravitationally collapse (condense) to form planetesimals, planets, moons and stars. The condensation of planetesimals may require a degree of assistance to achieve GI, generally in the form of pressurization of the inner edge of a protoplanetary or debris disk (accretion disk) against a stellar or planetary resonance.

– Hybrid Accretion (Thayne Currie 2005):
Core accretion of planetesimals formed by GI (hence hybrid) to form larger dwarf planets or super-Earth type planets. (Super-Earths are capable of clearing their orbits of their planetesimal precursors whereas dwarf planets are not.) Cascades of super-Earths are suggested to form in succession from the inside out, creating a belt of left over planetesimals ‘evaporated’ just beyond the 1:3 resonance of the furthermost super-Earth of the cascade.

– IOC:
(Inner Oort cloud), also known as the ‘Hills Cloud’, the doughnut-shaped comet cloud with its inner edge in the range of 2,000 – 5,000 AU and outer edge at perhaps 20,000 AU, suggested to have been evaporated to that distance by our former binary brown-dwarf Companion.

– KBO (Kuiper-belt object):
Type II planetesimals condensed by GI from the secondary debris disk, suggested to be from the binary spiral-in merger of our former binary-Sun at 4,567 Ma. Hybrid accretion of KBOs may form larger dwarf planets. KBOs will be defined as a subset of TNOs (see TNO), generally lying between a 2:3 and a 1:3 resonance with Neptune.

– OOC:
(Outer Oort cloud), the spherical (isotropic) comet cloud perhaps 20,000 – 50,000 AU perturbed from the IOC by various internal solar-system and external forms of perturbation.

– LRN (LRNe plural):
(Luminous red nova), a stellar explosion with a luminosity between that of a nova and a supernova, thought to be caused by the spiral-in merger of two close-binary stars.

– Planetesimals:
A generic term for anything smaller than a planet, not specifically a moon. The term may apply to (Type I) presolar scattered disc objects (SDOs) and comets and to (Type II) secondary debris-disk asteroids, chondrites, and trans-Neptunian objects (TNOs). The term may at times be stretched to include dwarf planets formed by hybrid accretion from smaller planetesimals condensed by GI.

– Protostar, young stellar object (YSO):
For the convenience of accommodating the statement, ‘our former protostar may have fragmented 3 times to form a quadruple star system’, the definition of a protostar will proceed the formation of a FHSC but end before the formation of a SHSC, which is suggested to form spin-off planets like Jupiter and Saturn. Then YSOs will be defined to span from a SHSC to the main sequence.

SDO (scattered disc object):
Objects condensed by GI from the Type I protoplanetary disk, most with semi-major axes generally above a 1:3 resonance with Neptune. Most most SDOs may have condensed by GI from the inner edge of the protoplanetary disk between the orbits of Uranus and Neptune shortly before 4,567 Ma and were subsequently scattered outward as Uranus and Neptune cleared their orbits. SDOs and comets may be part of the same original population or from closely-related populations.

– SHSC
By definition, the formation of a (Second HydroStatic Core) converts a protostar to a YSO, which involves endothermic dissociation of molecular hydrogen and its ionization. Dissociation and ionization in the core may occur in a temperature range of perhaps 2,000-8,000 K. Endothermic dissociation and ionization promotes nearly-isothermal gravitational collapse will will isolate the high angular-momentum outer layers of protostars which may become gravitationally bound within their own Roche spheres to form hot-Jupiters. Proto-planets may also spin off proto-moons.

– SSB:
(Solar-system barycenter) The suggested gravitational balance point between the Sun and a former binary-Companion brown dwarf prior to its asymmetrical spiral-in merger at 542 Ma which gave the Companion escape velocity from the Sun. The SSB may have perturbed planetesimals by creating a transition from from apsidal precession pointed away from the Companion (for planetesimals closer to the Sun than the SSB) to apsidal precession pointed toward the Companion (for planetesimals further from the Sun than the SSB).

– Super-Earth: (See Hybrid Accretion)

– TNO (trans-Neptunian object):
TNO will be defined to include all the Type II secondary debris-disk planetesimals beyond Neptune, including Plutinos, classical Kuiper-belt objects (KBOs) between 2:3 and 1:2 resonance with Neptune and other debris-disk objects mostly between 1:2 and 1:3 resonance with Neptune. Most scattered disc objects (SDOs) beyond a 1:3 resonance with Neptune are assumed to be Type I protoplanetary and not TNOs. TNOs will also include larger hybrid accretion objects that are predominantly composed of Type II material.

– Type I material:
Highly-oxidized protoplanetary material form the Sun’s Bok globule stellar nursery, including scattered disc objects (SDOs), comets and CI chondrites. Type I planetesimals condensed by GI are not significantly volatile depleted.

– Type II material:
Volatile-depleted secondary debris-disk material from the Sun’s spiral-in merger at 4,567 Ma, including asteroids, chondrites (with chondrules), Plutinos and Kuiper-belt objects (KBOs). Objects condensed by GI from the debris disk have variable volatile depletion, depending on when they condensed and how far from the Sun. (The Sun was presumably hotter during its suggested 3 million year flare-star phase following its merger. Polar jets from the core, from which CAIs presumably condensed, were the most highly enriched with stellar-merger-nucleosynthesis helium-burning stable isotopes 12C and 16O, but the polar jet fall was apparently mostly confined to the inner solar system.)

– Wide Binary:
‘Soft’ wide-binary pairs (planetesimals, planets, moons or stars) tend to spiral out due to external perturbation, becoming progressively softer over time.

YSO (see Protostar)
…………………………..

Our former quadruple star system:

Our protostar may have undergone Jeans instability inside a Bok globule within a giant molecular cloud followed by 3 stellar fragmentations to form a quadruple star system. Stellar core collapse is suggested to have formed two ‘hard’ close-binary pairs, binary-Sun and binary-Companion, in a ‘soft’ wide-binary separation. ‘Hard’ binary orbits tend to spiral-in, or harden, due to external perturbation, while ‘soft’ binary orbits tend to spiral out, or soften when externally perturbed. Hereafter, ‘close binaries’ are defined to be hard orbits that tend to spiral in, while ‘wide binaries’ are defined to be soft orbits that tend to spiral out, regardless of actual or relative separation distances. A circumbinary protoplanetary disk is suggested to have formed around binary-Sun after stellar core collapse had evaporated binary-Companion far enough to prevent its formation by resonant interference.

Stellar core-collapse is suggested to have progressively transferred energy and angular momentum from the two largest stellar components of binary-Sun to increasing the wide-binary Sun-Companion separation, causing binary Sun to spiral in and merge in a luminous red nova (LRN) at 4,567 Ma, creating the short-lived radionuclides of our early solar system by stellar-merger nucleosynthesis. After another 4 billion years, the binary-Companion may have similarly spiraled in to merge in a smaller, asymmetrical LRN at 542 Ma which ushered in the Phanerozoic Eon and gave the merged Companion escape velocity from the Sun. Finally, if one of the two binary brown-dwarf components had been a room-temperature Ys spectral class brown dwarf or smaller super-Jupiter, then dissemination of brown-dwarf faunal lifeforms during spiral-in merger may have been responsible for the Cambrian Explosion of life on Earth.

The Nice-Model/Grand-Tack was designed to explain the late heavy bombardment (LHB) of the inner solar system from 4.1 to 3.8 Ga and the trillion or so comets of the Oort cloud, but it can not explain the ‘late’ 450 million year delay in the bombardment; however, a continuous exponential rate of wide-binary period increase may be able to explain timing by incorporating an earlier (4.22 Ga) episode of lunar impacts discovered by Apollo 16 and 17 and the later Archean to Proterozoic transition at 2,500 Ma.

Secular Core Collapse of our Former Triple-star/Brown-dwarf System from 4,567 Ma to 542 Ma causing the Late Heavy Bombardment (LHB):

Lunar rock in the range of 4.04–4.26 Ga, from Apollo 16 and 17, separate the formational 4.5 Ga highland crust from the 4.1–3.9 late heavy bombardment (LHB) melts and breccias, suggesting an earlier pulse of a bimodal LHB.

Whole-rock ages ~4.2 Ga from Apollo 16 and 17, and a 4.23–4.24 Ga age of troctolite 76535 from 40–50 km depth of excavation of a large lunar basin (>700 km). The same 4.23 Ga age was found in Far-side meteorites, Hoar 489 and Amatory 86032. Samples from North Ray crater (63503) have been reset to 4.2 Ga. Fourteen studies recorded ages from 4.04–4.26 Ga (Table 1).
(Norman and Neomycin 2014)

Core-collapse ideology for an exponential rate of Sun–Companion apoapsis increase may have caused the SSB to cross the 2:3 Plutino resonance with Neptune (39.4 AU) at about 4.22 Ga, and then to have reached the classical Kuiper belt at about 43 AU by 3.9 Ga, causing a bimodal late heavy bombardment of the inner solar system.

Exponential rate of increase in the wide-binary (Sun-Companion) separation:

Note: The actual mass of our former binary Companion is relatively unimportant if the perturbation of TNOs and comets is due to the solar system barycenter between the Sun and the Companion, so the Alpha Centauri star system is arbitrarily chosen for scaling purposes, with our Sun corresponding to the combined binary mass of Alpha Centauri AB and our former binary Companion corresponding to the mass of Proxima Centauri. Since Alpha Centauri AB is almost exactly two solar masses, a former binary Companion half the mass of Proxima Centauri would complete the symmetry: a binary Companion of .0615 solar mass (1/16.26 solar mass) is suggested.

Assuming exponential wide-binary orbit inflation of the form,
y = mx + b
where:
y is the log(AU) wide-binary (Sun-Companion) separation
x is time in Ma (millions of years ago)
m is the slope, corresponding to the exponential rate
b is the y-intercept, corresponding to 0.0 Ma (the present)

Calculate ‘m’ and ‘b':
1) SSB at 2:3 resonance with Neptune:
1.5955 + 1.2370 = 4220m + b
2) SSB at 43 AU (classical Kuiper belt spike):
1.6335 + 1.2370 = 3900m + b

Where:
1.5955 = log( 39.4 AU), log of Plutino orbit
1.6335 = log( 43 AU)
1.2370 = log( 1 + 16.26 ) This scales the SSB distance from the Sun to the Companion. With the relative distance of the SSB to the Sun scaled to ‘1’, the relative distance from the SSB to the Companion is ‘16.26’, so the total relative distance from the Sun to the Companion is (1 + 16.26) = 17.26 (added logarithms are multiplied distances).

Solving for ‘m’ and ‘b’, yields:
y = -x/8421 + 3.334

x = 4,567 Ma, y = 618 AU, SSB = 35.8 AU
x = 4,220 Ma, y = 679 AU, SSB = 39.4 AU (Plutino orbit)
x = 3,900 Ma, y = 742 AU, SSB = 43 AU (classical Kuiper belt spike)
x = 2,500 Ma, y = 1088 AU, SSB = 63 AU (Archean to Proterozoic, TTG to granite transition)
x = 542 Ma, y = 1859 AU, SSB = 108 AU

The SSB crossed the 1:3 resonance with Neptune (62.5 AU) at 2530 Ma at the Archean to Proterozoic boundary, when when Tonalite–trondhjemite–granodiorite (TTG) gneiss domes transition to granite in continental basement rock (The tonalite-trondhjemite-granodiorite (TTG) to granodiorite-granite (GG) transition in the late Archean plutonic rocks of the central Wyoming Province, 2006).

So the timing of the LHB may be calculable and falsifiable rather than fortuitous and ad hoc as in Grand Tack:
1) The Sun-Companion solar-system barycenter (SSB) crosses Plutinos in a 2:3 resonance with Neptune (39.4 AU) at 4.22 Ga, causing the first pulse of a bimodal LHB
2) The SSB reaches 43 AU in the classical Kuiper belt Cubewanos at 3.9 Ga, causing the second and extended pulse of the LHB, ending around 3.8 Ga and ushering in the Archean Eon.
3) The SSB reaches the 3:1 resonance with Neptune (62.5 AU) at 2.5 Ga, entering the scattered disc to where the bulk of protoplanetary planetesimals are suggested to have been scattered by Neptune

SSB perturbation makes an additional falsifiable suggestion that (SSB) perturbation initiated aqueous differentiation in planetesimals, forming gneiss-dome cores in Plutinos and KBOs (TNOs = Plutinos + KBOs) and supracrustal rock on the surface of SDOs. (See sections:
– AQUEOUS DIFFERENTIATION OF TNOs, DWARF PLANETS AND COMETS
– SUPRACRUSTAL ROCK AS A DIFFERENTIATED DEBRIS-DISK COATING ON TRANS-NEPTUNIAN OBJECTS)

Asymmetry of the Companion merger at 542 Ma:
While the contact-binary and common-envelope phases of spiral-in stellar mergers are known to bleed gas from the larger stellar component to the smaller stellar component, tending to balance the component masses prior to merger, the process may be less efficient in cooler stars and particularly so in compact brown dwarf binary pairs, permitting sufficient asymmetry in the brown-dwarf merger of our former Companion to have resulted in escape velocity.

Kuiper belt, scattered disc and Oort cloud:
So the well behaved Kuiper belt condensed in situ, explaining its typically low inclination and low eccentricity of TNOs compared to SDOs which are suggested to have been scattered outward by Uranus and Neptune. Then the ‘Kuiper cliff’ can be explained as a combination of in situ condensation of larger debris-disk planetesimals inside the 1:2 resonance with Neptune and orbit clearing of comets by the Companion to a distance beyond its own 1:3 resonance, putting the inner edge of the IOC at about 3800 AU (with the 1:3 resonance beyond the Companion about twice the apapsis distance of the 1859 AU Companion from the Sun by 542 Ma).

Former quadruple-star with binary-Companion conclusions:
– Timing and mechanism for a bimodal LHB
– All the Eon transitions on Earth: Hadean to Archean, Archean to Proterozoic, and Proterozoic to Phanerozoic
– Composition and location of Plutinos and classical (in situ) Kuiper belt and ‘Kuiper cliff’
– Composition of the scattered disc and location of scattered disc
– Composition of the Oort cloud and the location of the inner edge of the IOC
– Cambrian Explosion of life on Earth
– Transitional trends in Earth’s rock record and the origin of continental tectonic plates
……………………….

Jeans instability and binary formation by fragmentation:

The initial gravitational collapse in protostars is nearly isothermal as long as the contracting cloud remains transparent to infrared radiation. When the central density in protostars reaches about 10^-13 g/cm-3, a small region starts to become opaque, “and the compression become approximately adiabatic”. “The central temperature and pressure then begin to rise rapidly, soon becoming sufficient to decelerate and stop the collapse at the centre. There then arises a small central ‘ core ‘ in which the material has stopped collapsing and is approaching hydrostatic equilibrium” [formation of a first hydrostatic core (FHSC)]. “The initial mass and radius of the core are about 10^31 g and 6×10^13 cm, respectively, and the central density and temperature at this time are about 2 x 10^-10 g/cm-3 and 170° K.”
(Larson 1969)

It’s difficult to imagine fragmentation of an object with a core of whatever density, so the working ideology suggests that stellar/planetary ‘fragmentation’ occurs during the formation of a FHSC. The high angular momentum outer layers of the protostar may become isolated during gravitational contraction described by Larson during the formation of the FHSC, and a fragmented binary companion is suggested to form from the high angular momentum outer layers if they become gravitationally bound within their own Roche sphere and undergo Jeans instability themselves. A subsequent fragmentation may occur to the new binary component during its own contraction to form a FHSC. This process is suggested to have occurred three times in succession in our own solar system to form a quadruple star system.

Larson suggests the second hydrostatic core begins forming at about 2000 K when hydrogen molecules begin to dissociate. “This reduces the ratio of specific heats, gamma, below the critical value 4/3, with the result that the material at the center of the core becomes unstable and begins to collapse dynamically.” (Larson 1969) However, experimental testing suggests that molecular hydrogen dissociation occurs over a temperature range of around 6,000 K – 8,000 K (Magro et al. 1996) which may grade directly into hydrogen ionization, forming mixture of molecular-hydrogen + atomic-hydrogen + plasma. Figure 3 in Magro shows the nearly-isothermal decrease in kinetic energy occurring in the dissociation/ionization temperature range, indicating an endothermic event which promote run-away gravitational collapse to form the ‘second hydrostatic core’ (SHSC).

Taken from (Magro et al. 1996), Fig. 3 Shows nearly-isothermal (endothermic) dissociation of molecular hydrogen at various Wigner–Seitz radii.

Taken from (Magro et al. 1996), Fig. 3
Shows nearly-isothermal (endothermic) dissociation of molecular hydrogen at various Wigner–Seitz radii.

For the convenience of accommodating the statement, ‘our former protostar may have fragmented 3 times to form a quadruple star system’, the definition of a protostar will be pushed back to include incipient contraction during the formation of a FHSC but prior to the endothermic collapse suggested to form a SHSC, which is suggested to form hot Jupiters. Then YSOs will be defined to span the period from the formation of SHSCs to the main sequence.

Extension of the stellar fragmentation ideology during the formation of a FHSC to the formation of a SHSC suggests the mechanism for formation of hot-Jupiter gas-giant planets in low hot orbits.
……………………..

Hot-Jupiter ‘spin-off planets’ (Jupiter and Saturn):

When the temperature in the core of protostars with a FHSC reaches several thousand Kelvins, endothermic dissociation of molecular hydrogen and its ionization absorb incremental energy of compression contributed by new infalling gas, clamping the temperature and promoting nearly-isothermal, runaway gravitational collapse in the core. Runaway gravitational collapse of the FHSC may isolate the somewhat compressed outer layers of protostars with sufficient angular momentum to assume a Keplerian orbit. When the core collapses inside a significantly-oblate protostar, it may leave behind a doughnut-shaped ring of somewhat compressed gas rotating at near Keplerian speed which may undergo disk instability to form a gravitationally-bound mass contained within its own Roche sphere, a proto-hot-Jupiter.

For Jeans instability, the free-fall time must be less than the sound crossing time, otherwise the system rebounds, but evaporative diffusion of volatile hydrogen across a vast proto-planet Roche sphere will tend to progressively increase the average molecular weight of the proto-planet over time, decreasing the speed of sound until free fall wins, collapsing to form a FHSC. During this initial gravitational collapse, proto-planets like proto-planets will typically fragment, forming a binary proto-planet due to excess angular momentum. Additional fragmentations may form proto-moons which themselves may fragment to form binary-moons. And the multiplicity of resonant beat frequencies of binary stars with their binary spin-off planets which in turn may have binary spin-off moons may cause rapid secular core collapse of the system, causing the rapid spiral in of binary pairs chasing nearby beat frequencies.

In our own solar system, the larger A-star ‘Jupiter-component’ of binary Sun may have formed the spin-off planet, Jupiter, and the smaller B-star ‘Saturn-component’ may have formed the spin-off planet, Saturn. The separation of the Jupiter-component from the Saturn-component of binary-Sun at the time they formed their respective hot-Jupiter spin-off planets may have been about the current maximum separation of Jupiter from Saturn at opposition with respect to the Sun, that is about the separation of Jupiter’s semi-major axis plus Saturn’s semi-major axis for a total binary separation of about 15 AU.

Gas-giant proto-planets, in turn, will also form first and second hydrostatic cores, and may typically fragment during the formation of their FHSCs to briefly become binary planets. And each binary-planet component may in turn for spin-off moons during the formation of their SHSCs which may themselves fragment to form binary moons. In this way, Ganymede may be a spin-off moon formed from the larger binary-Jupiter component, with spin-off moon Callisto forming around the smaller binary-Jupiter component. (And Ganymede and Callisto likely fragmented to form binary moons which subsequently spiraled in to merge and form solitary moons, like former binary-Jupiter and binary-Saturn.

As binary Sun spiraled in, Jupiter and Saturn retained their orbital energy and angular momentum and so were left behind. When Jupiter and Saturn, in turn, reached the nearest Lagrangian point of the binary solar pair they converted from circumprimary and circumsecondary orbits to circumbinary orbits. And Jupiter’s ‘hot-moons’, apparently did likewise until Jupiter’s binary components spiraled in to merge to form a solitary Jupiter, likely prior to the 4,567 Ma solar merger. Jupiter’s 4 Galilean moons appear to correspond to the formation process of Jupiter-and-Saturn and Venus-and-Earth. By comparison, Saturn’s former binary spin-off moons appear not to have spiraled in and merged but to have separated, forming the 4 low-density moons, Mimas, Tethys, Rhea and Iapetus, perhaps due to a close encounter with one of the two solar components when Saturn itself was transitioning into a circumbinary orbit.
…………………….

‘Merger Planet’ (Earth and Venus):

Spiral-in contact binary and common envelope:
When Roche spheres touch in a ‘contact binary’, the smaller stellar component may siphon the atmosphere of the larger component until their masses are more-nearly balanced. Additional spiral in forms a ‘common envelope’ in which the stellar cores orbit their common barycenter inside an expanded (common) stellar envelope. And the drag of the stellar cores orbiting inside their combine common envelope may create a super-intense solar wind. But a super-intense solar wind streaming away from a common envelope would only carry away something near average specific angular momentum which would not promote further spiral in of the cores and might merely tend to circularize their barycentric orbits by shedding excess orbital energy.

Working backwards from Earth’s terrestrial fractionation line with its ∆17O lying below assumedly-presolar Mars on the 3-oxygen isotope plot suggests a solar-merger origin for Earth with helium-burning stable-isotope enrichment, and by twin-planet symmetry, for Venus as well.

Excess angular momentum of binary components in spiral-in mergers of stars (and binary gas-giant planets) are suggested to create dynamic bar-mode instabilities with high angular momentum tails allowing the binary cores to continue spiraling in while conserving angular momentum.

The bar-mode arms may be nearly symmetrical after the smaller stellar component siphons its way to equality inside the common envelope. Then Keplerian rotation may cause dynamic bar-mode arms to progressively lag behind the binary-core rotation rates, smearing the bar-mode arms into trailing, but still connected, tails. As the binary cores continue sinking inward, the still-connected magnetic field lines in the bar-mode arms and tails become increasingly twisted to the breaking point. Magnetic reconnection occurs in the twisted field lines, causing them to slice through the trailing bar-mode arms will induce opposing magnetic fields that are suggested propel nearly-symmetrical bar-mode masses outward, enabling the binary cores to catastrophically rid themselves of excess angular momentum in the form of gravitationally-bound (proto) ‘merger planets’.

If Venus and Earth are representative of merger planets, then spiral-in mergers of solar-mass stars may also have Venus- and Earth-sized planets in circa 1 AU orbits. Likewise, gas-giant planets including hot Jupiters might be expected to have 4 Galilean moons, two larger outer spin-off moons and 2 merger moons.

The red giant phase of LRN M85OT2006-1 would have reached the Kuiper Belt and perhaps well into it with a size estimated as R = 2.0 +.6-.4 x 10^4 solar radii with a peak luminosity of about 5 x 10^6 solar. (Rau et. al. 2007) “Previously published line indices suggest that M85 has a mean stellar age of 1.6+/-0.3 Gyr. If this mean age is representative of the progenitor of M85 OT 2006-1, then we can further constrain its mass to be less than 2 Msolar.” (Ofek et al. 2007) So the red-giant phase of the solar LRN of half the mass likely have enveloped at least the terrestrial planets along with Jupiter and Saturn, and would have contributed to the volatilization of proto-Venus and proto-Earth across the enormous surface area of their Roche spheres, but the red-giant phase only lasts for a few months.

The pair of hurled off gravitationally-bound proto-merger-planet masses of proto-Earth and proto-Venus, perhaps originally as great as the mass of Saturn, cooled by expansion as well as by diffusive evaporation of hydrogen and helium and other volatiles across their enormous Roche spheres, creating the resulting ‘terrestrial volatility trend’. And periodic super-energetic solar flares during the suggested 3 million year flare-star phase of the Sun following its spiral-in merger, may have greatly contributed to volatile volatile evaporation of the twin proto-planets. Cooling may have continued for 10s of thousands of years, perhaps to the point of converting most of its hydrogen to molecular form below about 2000 K, and chemical reactions were continuously lowering the average Gibbs free energy of the gas and dust.

As the twin proto-merger-planets gradually cooled and raised their average molecular weight, Jeans instability ultimately caused gravitational collapse, which likely fragmented proto-Venus once to form binary-Venus and fragmented proto-Earth twice to form trinary-Earth. Subsequent perturbation caused binary-Venus to spiral in and merge and similarly caused Earth’s two largest trinary components to spiral in and merge, while evaporating Earth’s smallest component outward to form Earth’s oversized Moon with high angular momentum. All the former binary and trinary components of Venus and Earth may have originally formed anorthosite crust by fractional crystallization during slow cooling, like the anorthosite crust on the lunar highlands of Earth’s Moon, but Venus and Earth lost their primordial anorthosite crust during their subsequent binary mergers.

Earth’s ‘terrestrial fractionation line’ (∆17O) on a 3-isotope oxygen plot lies below presumably protoplanetary Mars, which indicates terrestrial contamination with stellar-merger oxygen-16 enrichments, but if the proto-merger-masses were magnetically hurled off during spiral in, then the contamination must have been the result of inward diffusion of oxygen-16 from the red-giant phase of the LRN and subsequently during the 5 million year debris-ring phase during which chondrites were presumably condensed by GI. Mars too would have received an LRN debris-disk coating, but a vastly more massive (if originally Saturn sized) and pithy object like proto-Earth would have had a vastly-larger surface on which to interact with dust and heavy gaseous compounds in heliocentric orbits. Outward diffusion of hydrogen from a pithy proto-Earth colliding with dust and heavy molecules in (retrograde) heliocentric orbits would knock some material out of orbit, allowing it to fall toward proto-Earth, but generally, diffusion would be bidirectional, tending to diffuse volatiles outward while diffusing refractories and dust inward. (Alternatively, the hurled off proto-merger-masses may have had a direct input of stellar-merger helium-burning isotopes.)

The spiral-in merger of the two-largest Earth components some 50 million years after the solar merger may have emitted polar jets of molten core material, highly chemically reduced and highly siderophile in composition. This material may have condensed below Jupiter’s 4:1 resonance at about 2 AU from the Sun to form chemically-reduced enstatite chondrites, high in siderophile elements, which lie near or on the terrestrial fractionation line.
………………..

Pebble accretion vs. gravitational instability (GI):

Pebble accretion does not appear to be borne out by chondrites that have no internal structure above that of chondrules, CAIs and etc. If chondrules formed by melting accretionary dust clumps, then accretion appears to end at chondrule-sized masses, at least inside the snow line. Large, centimeter-scale chondrules, such as those in late-forming CB chondrites (4,562.7 Ma) point to late formation at considerably-greater distance from the Sun, suggesting, perhaps, accretionary chondrules formed in centaur orbits (between Saturn and Uranus) from the spiral-in merger of former binary Saturn.

Planetesimal ‘condensation’ by Gravitational Instability (GI):
Jeans instability in the planetesimal range may require elevated ice-and-dust to gas ratios in addition to pressurized conditions. The most typical location for planetesimal condensation may be the pressurized inner edge of accretion disks (protoplanetary disks or secondary debris disks), at the pressure dam just beyond the magnetic corotation radius of solitary stars or at the inner edge of circumbinary accretion disks around binary stars. Inner and outer heliocentric planetary resonances around giant planets may serve as secondary sites for planetesimal condensation, with a resonance or magnetic corotation radius providing a backstop and infalling gas, dust, and ice pressurizing the disk, promoting GI.

Comets range in size from about 1 to 20 km Dia, whereas Plutinos and cubewanos are frequently larger than 100 km Dia. Additionally, Trilling et al. discovered a rapid decline in objects over 100 km beyond 50 AU. Comets and scattered disc objects (SDOs) are both suggested to be protoplanetary, but they may be from two separate reservoirs if comets condensed first beyond the Companion, and perhaps comets condensed beyond the Companion while the solar system was still embedded in its birth Bok globule in the neighborhood of 10 Kelvins. By comparison, present-day scattered disc objects (SDOs) may have condensed slightly later after stellar core collapse had opened up a sufficient gap for a circumbinary protoplanetary disk to form around binary-Sun but closer than binary-Companion, somewhere between Uranus and Neptune and and later scattered outward by orbit clearing. Alternatively, both SDOs and comets may have condensed between Uranus and Neptune, with SDOs scattered to the scattered disk and comets scattered into the Oort cloud. Regardless, protoplanetary comets and SDOs appear to be dramatically smaller than secondary debris-disk Plutinos and cubewanos which formed later at presumably at higher temperatures, but a debris disk following a stellar merger may also be a far-more turbulent environment than a primordial Bok globule. So what combination of temperature, dust-and-ice to gas ratio, orbital distance, turbulence, and chondrule size determines the size of resulting planetesimal condensations?
……………..

Super-Earth planets Uranus and Neptune:

Uranus and Neptune is suggested to be a two-planet ‘hybrid accretion’ cascade of super-Earths formed by hybrid accretion of planetesimals condensed by GI at the inner edge of the protoplanetary disk, Uranus forming first followed by Neptune.

Uranus is suggested to have spiraled as a result of the lift required to clear its orbit of planetesimals, resulting in its 98° axial tilt. But did the formation of Uranus push back the inner edge of the protoplanetary disk sufficiently to precipitate a second generation of planetesimals near the orbit of Neptune, or did Neptune form from planetesimals cleared from Uranus’ orbit. Either way, the 98° axial tilt of Uranus vs. the smaller 28° axial tilt of Neptune suggests a far-greater lift by Uranus. The pileup of multiple exoplanets in low orbits below 1 AU suggests planetesimals must condense in multiple generations; however the outermost orbital gap generally appears to be proportionally greater than gaps closer in to the host star, suggesting a considerable lift for all but the outermost presumed super-Earth. (See section: CASCADE FORMATION OF SUPER-EARTHS BY HYBRID CORE ACCRETION OF PLANETESIMALS ‘CONDENSED’ BY GRAVITATIONAL INSTABILITY AT THE INNER EDGE OF ACCRETION DISKS)

Axial tilt is only a relative indication of planetesimal lift, since three other planets have axial tilts in the 20-30° range. Jupiter, however, has a tilt of only 3° suggesting a possible reorientation of the solar system following the loss of the Companion at 542 Ma, with reorientation as a possible perturbator of planetesimals in the Phanerozoic Eon which may be in continuance today.

As Uranus grew in size by core accretion of kilometer-scale planetesimals, it began clearing its orbit, mostly by evaporating the planetesimals outward, so Uranus should fall within the typical range for a cascade of two super-Earths at its orbital distance; however, Neptune may be somewhat undersized for a super-Earth at its orbital distance, even considering its negligible lift of planetesimals evaporated into the scattered disc. The suggested secondary condensation of planetesimals from the solar-merger debris disk greatly complicates the issue of determining the mass and distance of protoplanetary planetesimals evaporated by Neptune, partly because small objects are difficult to detect at scattered-disc distances and partly because the proportion of protoplanetary planetesimals among Plutinos and cubewanos and beyond is unknown. But at least Uranus may serve as a standard candle for its orbital distance.
……………….

Super-Earth Mars:

As binary-Sun continued spiraling in after forming super-Earths Uranus and Neptune, a large gap appears between Mars and Uranus which may represent disruption of the protoplanetary disk by the emergence of Jupiter and Saturn as circumbinary planets from their original hot Jupiter circum-primary and circum-secondary origins around the binary solar components. Mars may also be the benefactor of the spiral-in merger of former binary-Jupiter, but binary-Jupiter-merger debris would have been essentially presolar in isotopic composition, if not in volatility.

The elevated ∆17O of Martian meteorites, compared to the terrestrial fractionation line, suggests a hybrid-accretion super-Earth origin for Mars, slightly before the 4,567 Ma solar merger, but the diminutive size of Mars as a super-Earth, particularly for its > 1 AU orbital distance, suggests a greatly-truncated accretionary phase which could have been due to a depleted protoplanetary disk along with the rapid spiral in of binary Sun, causing the inner edge of the protoplanetary disk to spiral in along with the solar resonances sculpting its inner edge, leaving diminutive Mars behind.

Mars is rife with finely-layered rock on a centimeter scale, which has been photographed by the various Mars rovers, but it also appears to have significantly-coarser degree of layering on a meter scale where it’s been photographed in chasmas and central crater uplifts (particularly/exclusively[?] in the Arabia Terra region) by Mars orbiters at lower resolution.

Some or most of this coarser sedimentary layering on Mars is suggested to have differentiated from a secondary debris-disk coating layer accreted from the 4,567 Ma solar-merger LRN debris disk, and if so, Mars ‘blueberries’ may be chondrules, with larger, older binary-Jupiter-merger chondrules and smaller, slightly-younger LRN chondrules. If Mars is indeed a protoplanetary super-Earth, then the resulting sedimentary rock would be a composite between protoplanetary Mars and a surficial solar-merger-debris coating, with the coating enriched in helium-burning stable isotopes (carbon-12 and oxygen-16).

The coarse sedimentary layering sequences on Mars are reminiscent of reverse faults in supracrustal rock on Earth, and not coincidentally, the suggested scattered-disc origin of Proterozoic supracrustal rock on Earth may be identical to the differentiation of a debris-disc coating on Mars, right down to subsequent reverse faulting during contraction of the host planet/planetesimal. Then to complete the analogy, supracrustal rock on Mars should have similar volcanic layers, caused by differing oxidation potentials between protoplanetary and debris-disk materials.

The debris-disk coating should have been significantly more volatile depleted in the inner solar system than in the scattered disk (with a higher oxidation potential: ‘Eh’); however, greater volatility and oxidation potential of the debris disk in the inner solar system may have been largely offset by a greater volatility and oxidation potential of the protoplanetary disk in the inner solar system. SDOs apparently had to wait until the Proterozoic Eon for the solar-system barycenter (SSB) between the Sun and our former binary-Companion to reach the scattered disc to perturb the debris-disc coating to undergo aqueous and thermal differentiation, whereas the debris-disk coating may have chemically reacted almost immediately on Mars, giving it an Early Hadean age.

The twisted terrain of Hellas Planitia (impact basin) is suggested to be the lithified core of a late heavy bombardment cubewano that had undergone internal aqueous differentiation to form TTG series gneiss domes, similar to comparable Hadean and Early Archean rock on Earth.
………………..

Asteroids, chondrites, Mercury and the odd rotation rates of Mercury and Venus:

CAIs are suggested to have condensed from polar jets blasting from the core of the spiral-in solar-component merger, explaining their canonical enrichment of aluminum-26. If the flare-star phase of the Sun following the LRN melted dust accretions to form chondrules, then the flare-star phase must have lasted the 3 million-year duration of chondrule formation. The 1 slope of chondrules and CAIs of the carbonaceous chondrite anhydrous mineral (CCAM) line indicates complete mixing, whereas the 1/2 slope of the terrestrial fractionation line indicates complete fractionation, and not mass-independent fractionation as is commonly supposed. Ordinary chondrites, however, have a greatly-elevated ∆17O bulk-matrix lying above presolar Mars 3-oxygen-isotope fractionation line which may indeed be due to photochemical-induced mass-independent fractionation due to extended solar exposure of small dust grains with high surface-to-volume ratios over some 5 million years prior to their condensation by GI into ordinary chondrites, where mass-independent fractionation may be “occurring mainly in photochemical and spin-forbidden reactions” (Wikipedia–Mass-independent fractionation).

Asteroids are suggested to have condensed by GI from the inner edge of the solar-merger debris disk sculpted by the magnetic corotation radius of the Sun in its energetic flare-star phase. And Mercury may be a hybrid accretion of asteroids, followed by asteroid orbit-clearing by the 3 terrestrial planets into Jupiter’s inner resonances. Rocky-iron asteroids may have ‘thermally differentiated’ by radioactive decay of LRN f-process radionuclides, whereas chondrites may have condensed after the relative extinction of the short-lived radionuclides. So the planet Mercury may have isotopic enrichments similar to the howardite–eucrite–diogenite (HED) meteorites thought to be from 4 Vesta.

If Venus had formerly been in a synchronous orbit around the Sun prior to the loss of our former binary-Companion, the loss of the centrifugal force is suggested to have lowered its orbit slightly, perhaps accounting for its slight retrograde rotation. The planet Mercury is in a 3:2 spin-orbit resonance in which it undergoes 3 rotations for every 2 orbits around the Sun, so if Mercury had a former 1:1 synchronous orbit like Venus, then its prograde rotation rated increased rather than decreasing like Venus’. This might occur, however, if Mercury assumed a more eccentric orbit with lower orbital angular momentum and higher rotational angular momentum in order to conserve both energy and angular momentum in its closed system.
—————


CASCADE FORMATION OF SUPER-EARTHS BY HYBRID CORE ACCRETION OF PLANETESIMALS ‘CONDENSED’ BY GRAVITATIONAL INSTABILITY AT THE INNER EDGE OF ACCRETION DISKS:

Thayne Currie suggests a compelling hybrid mechanism for forming (giant) planets by accretion from a population of 1 km planetesimals, in which the planetesimals have been formed by gravitational instability (GI). (Currie, 2005)

Suggested alterations to Thayne Currie’s hybrid accretion model:

1) Planet types formed by hybrid accretion:

This hybrid mechanism may be limited to forming terrestrial super-Earth–type planets like Mars and ice giants like Uranus and Neptune, but not gas-giant planets which are posited to form by GI from outer stellar layers isolated by their excess angular momentum.

2) Hybrid-accretion planetesimal size:

Presolar planetesimals forming super-Earths may be vastly larger than the 1 km planetesimal size envisioned if circa 100 km trans-Neptunian objects (TNOs) were formed by GI as the evidence of similar size and color of TNO binaries suggests. Secondary debris disks, however, may ‘condense’ smaller planetesimals, perhaps down to 1 km, due to elevated dust-to-gas ratios, forming Mercury as a hybrid accretion planet from asteroids ‘condensed’ from the spiral-in binary solar merger (4,567 Ma) debris disk.

3) Location, location, location:

The formation of planetesimals by GI may require,
1) elevated dust-to-gas ratios, and
2) pressurization,
both of which may most typically occur in the pressure dam at the inside edge of accretion disks. The inner edge of accretion disks around solitary stars may be governed by the magnetic corotation radius of the star, whereas the inner edge of circumbinary accretion disks may be governed by binary stellar resonances. Finally, a limited degree of planetesimal formation by GI may occur in giant planet resonances, such as chondrite formation which may have occurred in situ in Jupiter’s inner resonances at highly-elevated dust-to-gas ratios.

Mercury, Mars, Uranus and Neptune may be ‘super-Earth’ type planets formed by hybrid accretion of planetesimals in 3 separate planet-formation episodes.

Uranus and Neptune:
The super-Earth cascade of Uranus and Neptune first super-Earth formation episode at the inner edge of the circumbinary protoplanetary disk beyond our former binary Sun, where the binary solar-component separation at the time may have been on the order of the combined semi-major axes of Jupiter and Saturn. When Uranus reached its current size by hybrid accretion of TNOs, it was able to clear its orbit by ‘evaporating’ most of the planetesimals outward. But the effort of clearing its orbit of more than its own mass of TNOs and larger dwarf-planet–sized hybrid accretions lowered Uranus’ orbit, perhaps resulting in its 98° axial tilt due to closed-system conservation of orbital and rotational angular momentum. Neptune formed after Uranus and then similarly cleared its orbit of the remaining TNOs and dwarf planets, most of which were evaporated into the Kuiper belt beyond.

Mars:
If Jupiter and Saturn are spin-off planets (see section: PLANETS, MOONS, DWARF PLANETS AND PLANETESIMALS) that spiraled out from the binary solar components as the solar components spiraled during stellar core collapse, Jupiter and Saturn may have disrupted the circumbinary protoplanetary disk from condensing protoplanets until the binary separation of our former binary Sun was considerably less than 1 AU. So the hybrid accretion of Mars occurred prior to the ultimate binary solar merger at 4,567 Ma. Orbit clearing by Mars of remaining planetesimals and larger dwarf-planet hybrid accretions may have wound up in Jupiter’s inner resonances, with 1 Ceres as the largest surviving hybrid-accretion dwarf-planet.

Mercury:
Mercury’s high density and proportionately-large iron core size suggests a hybrid accretion of highly volatilely-depleted asteroids ‘condensed’ by GI from the solar-merger debris disk with its inner edge at the (super-intense) magnetic corotation radius of the Sun following the solar merger, but we won’t know for certain until we get samples from Mercury to see if it corresponds to the stellar-merger–nucleosynthesis stable-isotope enrichment of ∆17O with rocky-iron asteroids like 4 Vesta. The terrestrial planets in turn cleared their orbits of the left-over asteroids, evaporating them into Jupiter’s inner resonances.

The size of super-Earth planets may be governed by the separation distance from the star or from the stellar barycenter in the case of circumbinary disks around binary stars, with larger super-Earths potentially forming further out in circumbinary accretion disks. The term ‘super-Earth’ implies a planet size larger than Earth, and indeed, super-Earths are more abundant in the exoplanet surveys than smaller terrestrial planets. Super-Earth size may also be constrained by lack of sufficient planetesimals, as may be the case in the diminutive size of Mars and Mercury. In cascades of Super-Earths, all but the outermost planet should have reached its target mass for dynamic orbit clearing, so only Uranus should be typical in size for its formation conditions.

In super-Earth cascades of 3 or more planets, the separation between the outermost two planets will typically be wider than inner separations since only the outermost planet has not sunk in orbit by clearing its orbit of one or more planet’s worth of planetesimals. Cascades of super-Earths tend to exhibit adjacent orbital-period ratios of 1:3 to 2:3 except for the outermost separation. This of course assumes no subsequent planetary dynamics which frequently may be a poor assumption.

The inner edge of circumbinary disks may be governed by corotation resonances and outer Lindblad resonances in the range of 1.8a to 2.6a, where ‘a’ designates the binary-stellar semi-major axis. (Artymowicz and Lubow 1994)

In cascades of super-Earths, do all the planetesimals form first? Can super-Earths push out the inner edge of circumbinary disks, creating renewed spates of planetesimal formation further out? A close examination of planet size and planetesimals separations may provide the answer.

In binary systems, spin-off planets like Jupiter and Saturn may interrupt the formation of super-Earths as our solar system seems to indicate. Around solitary stars, spin-off planets would presumably form before super Earths and may push out the inner edge of the protoplanetary disk, causing super-Earths to form further out at more temperate separations. Merger planets hurled to circa 1 AU separations from their merged stars like Venus and Earth may merely jostle a super-Earth cascade where it can squeeze in, confusing the sequence and thus confusing planetary origins. Indeed Earth may have edged Mars into a slightly higher orbit in Earth’s earliest protoplanet phase when it may have originally had the mass of Saturn or greater before becoming severely volatilely depleted.

Tau Ceti and HD 40307 are apparently five and six super-Earth exoplanet star systems, respectively, without the complication of spin-off planets or merger planets.

Star Systems with Super-Earth Cascades

 

Finally, aqueously-differentiated planetesimal cores may be visible on Mars in a number of chasmas and impact basins (Melas Chasma, Hellas Planitia, the central uplift in Becquerel Crater and etc.) where prevailing winds have removed sand dunes, revealing Mars’ internal composition.

Hellas Planitia, Twisted Terrain

Hellas Planitia, Twisted Terrain_1

—————

LUMINOUS RED NOVA (LRN) ISOTOPES:

Oxygen isotopes:

Our former binary Sun is suggested to have spiraled in and merged in a luminous red nova (LRN) at 4,567 Ma, creating the r-process radionuclides of the early solar system (aluminum-26, iron-60 et al.) and its helium-burning stable-isotope enrichment (carbon-12 and oxygen-16 et al.).

Carbonaceous chondrite anhydrous minerals (CCAM), including CAI and chondrules, plot with a 1 slope toward the lower left corner of the graph 3-isotope oxygen graph (δ17O vs. δ18O), with a 1 slope representing complete mixing due to rapid condensation from a vapor phase. (The anhydrous modifier is significant since any subsequent aqueous alteration, forming hydrous minerals, would occur slowly, allowing mass fractionation which would move the altered material off the 1 slope line.) By comparison, complete fractionation of oxygen isotopes plot as a 1/2 slope, since 17O – 16O = 1 unit of atomic weight and 18O – 16O = 2 units of atomic weight. The terrestrial fractionation line (TFL) plots with a slope of .52, nominally 1/2. The low cooling rate from a molten magma state on Earth and the similarly slow rate of authigenic precipitation from an aqueous state provides a significant opportunity for chemical reactions to occur within the temperature window in which mass fractionation is significant. So the 1 slope of CCAM merely represents complete mixing while the 1/2 slope of the terrestrial fractionation line (TFL) merely represents complete fractionation.

Carbonaceous chondrite anhydrous minerals (CCAM), including CAI and chondrules, plot with a 1 slope, representing complete mixing, due to rapid condensation from a vapor phase.  The terrestrial fractionation line (TF) plots with a 1/2 slope, representing complete mass fractionation, due to slow cooling from a molten state.

Carbonaceous chondrite anhydrous minerals (CCAM), including CAI and chondrules, plot with a 1 slope, representing complete mixing, due to rapid condensation from a vapor phase. The terrestrial fractionation line (TF) plots with a 1/2 slope, representing complete mass fractionation, due to slow cooling from a molten state.

When comparing completely fractionated materials such as terrestrial basalt and Mars meteorite basalt, it can be convenient to force force the nominal 1/2 slope (.52 slope for the TFL) to zero, making it a horizontal line, with the conversion:
∆17O = δ17O – .52 δ18O
∆17O vs. δ18O plots the TFL horizontally with igneous Mars rock on a horizontal rock above.

The degree of 16O enrichment can be be obscured by isotope fractionation when only δ17O (17O/16O) or δ18O (18O/16O) are measured isolation, but the measurement of all three oxygen isotopes and their graphing on a 3-isotope oxygen plot will cause mass-dependent fractionation to wash out, by aligning along a ‘fractionation line’ which is 16O-enrichment dependent. Comparing δ17O or ∆17O to δ18O on a 3-isotope oxygen plot, however, is generally reserved for meteorites, since continental Earth rock is assumedly terrestrial, but if the continental tectonic plates are aqueously and thermally differentiated planetesimal cores from two separate reservoirs (presolar protoplanetary and variably-enriched secondary debris disk) then comparison of all three isotopes becomes significant.

Plotting sufficient terrestrial basalt samples along side Mars meteorite basalt samples shows the two materials lie near fractionation lines, regardless of the extent of mass-dependent fractionation of individual samples. If only that were the end of the story, but ordinary chondrites plot above suggested presolar Mars which makes no sense if they condensed from the secondary debris-disk created by the spiral-in merger of our former binary-Sun at 4,567 Ma and thus were enriched in 16O. Without subsequent aqueous alteration, ordinary chondrites would plot below the TFL due to their suggested greater 16O contamination than Earth rock.

Secondary aqueous alteration may be responsible for forming secondary magnetite with high ∆17O, which raise ordinary chondrites above assumedly presolar Mars on the 3-isotope oxygen plot. “The maximum fractionation between magnetite and liquid H2O is -13.6‰ at 390 K [9]. In the UOC parent asteroid, H2O probably existed as a gaseous phase when magnetite formed. The maximum fractionation between magnetite and gaseous H2O is -10.5‰ at 500 K [10].” (Choi et al., 1997, Magnetite in unequilibrated ordinary chondrites: evidence for an 17O-rich reservoir in the solar nebula) But rather than a “17O-rich reservoir”, if the mechanism had been a matter of mass-dependent fractionation of gaseous H2O in the crust followed by the escape of the 17O-depleted remainder into interplanetary space, would not the result be the same?

During thermal differentiation of ordinary chondrites, if the temperature had reached the boiling point of water, the lightest-weight H2O molecules containing 16O would be the first to sublime or boil, and the least likely to condense or deposit (the opposite of sublimation), and the fastest to diffuse outward in a vapor phase. And outward mass-dependent fractionation may have been the result of repeated episodes of sublimation and deposition during the warming phase of thermal differentiation of ordinary chondrites which progressively expelled water ice from the core, then the mantle and finally the crust, increasing the degree of fractionation with each cycle. Then oxidation into magnetite selected the most mobile of the remaining oxygen isotopes, preferentially incorporating 17O into magnetite.
………………..

The flare-star phase of the Sun following its binary spiral-in stellar merger may be recorded in the 3 million year period of chondrule formation by super-intense solar-flare melting of debris-disk dust accretions, spiraling in toward the Sun by Poynting–Robertson drag.

If stellar-merger nucleosynthesis enriched the Sun in the stable isotopes 12C, 16O, and 20Ne by helium burning, then the stellar-merger core temperatures may have been in the neighborhood of 100-200 million Kelvins, with r-process nucleosynthesis forming the neutron-rich short-lived radionuclides (SRs) of our early solar system:
7Be, 10Be, 14C, 22Na, 26Al, 36Cl, 41Ca, 44Ti, 53Mn, 54Mn, 60Fe, 63Ni, 91Nb, 92Nb, 107Pd, 129I, 146Sm, 182Hf and 244Pu.

The high velocities necessary to create spallation nuclides in LRNe may have been observed in LRN PTF10fqs from a spiral arm of Messier 99. The breadth of the Ca II emission line may indicate two divergent flows, a high-velocity polar flow (~ 10,000 km/s) and a high-volume, but slower equatorial flow. (Kasliwal, Kulkarni et al. 2011) Some of the SRs may have been created by spallation in the high-velocity polar outflow of the LRNe, particularly 7Be and 10Be, since beryllium is known to be consumed rather than produced within stars.

The solar wind is ~40% poorer in 15N than earth’s atmosphere, as discovered by the Genesis mission. (Marty, Chaussidon, Wiens et al. 2011) The same mission discovered that the Sun is depleted in deuterium, 17O and 18O by ~7% compared to all rocky materials in the inner solar system. (McKeegan, Kallio, Heber et al. 2011) “[T]he 13C/12C ratio of the Earth and meteorites may be considerably enriched in 13C compared to the ratio observed in the solar wind.” (Nuth, J. A. et al., 2011)

The most apparent deficit in the Sun and in debris-disk material, however, may be the δ15N differences between presolar protoplanetary comets and CAIs condensed from solar-merger polar jets from the core, with canonical 26Al.

Most oxygen isotopes variations are only a few per mill (‰), but δ15N departures from terrestrial values are often measured in hundreds of per mille (tens of percent), with a solar difference of δ15N = -386 ‰ and cometary difference of δ15N ≈+800 ‰ for CN and HCN (Chaussidon et al. 2003). So 15N destruction must have been particularly efficient by way of two mechanisms, 15N(p,α)12C and 15N(p,γ)16O, known as the CN and the NO cycles respectively (Caciolli et al. 2011).

Deuterium will also have been destroyed in the solar merger, dramatically lowering the D/H ratio in the Sun and in debris-disk condensates, but the 2:1 difference in mass between H and D often makes fractionation more significant than the degree of depletion, making the D/H ratio a poor measure of the reservoir depletion.
—————


AQUEOUS DIFFERENTIATION OF KUIPER BELT OBJECTS (KBOs):

The problem of planetesimal formation is a major unsolved problem in astronomy since meter-sized “boulders are expected to stick together poorly, and to spiral into the protostar in a few hundred orbits owing to a ‘head wind’ from the slower rotating gas” (Johansen et al., 2007).

This approach rejects pebble accretion in favor of gravitational instability (GI) for the formation of planetesimals. In protoplanetary disks or debris disks (generically ‘accretion disks’), GI is suggested to occur in the pressure dam at the inner edge of accretion disks around solitary or binary stars. Around solitary stars, the inner edge of the accretion disk is assumed to be sculpted by the magnetic corotation radius, while the inner edge of accretion disks around binary stars is sculpted by the binary resonances. Heliocentric resonances associated with giant planets may also serve as pressure dams against which planetesimals can condense, such as chondrites condensed against Jupiter’s strongest inner resonances and Kuiper belt objects against Neptune’s outer resonances.

Our former protostar is hypothesized to have fragmented 3 times in succession, due to excess angular momentum, to form a quadruple star/brown-dwarf system, composed of a close-binary Sun and a close-binary Companion in a wide-binary separation which orbited the solar-system barycenter (SSB).

Protoplanetary reservoir comets and SDOs:

Solar system planetesimals are suggested to have condensed from 2 accretionary reservoirs at slightly-different times, with Oort cloud comets having condensed first from the circum-quaternary protoplanetary disk, most likely while still ensconced in our Bok globule stellar nursery. As stellar core collapse opened up an ever-increasing Sun-Companion wide-binary separation two things occurred. Comets were shepherded by the outer Sun-Companion resonances into ever-higher SSB-centric orbits by the ever-increasing period of the Sun-Companion orbit around the SSB, and the increasing wide-binary separation opened up a sufficient Sun-Companion gap for a circumbinary protoplanetary disk to form around binary-Sun, causing a second round of planetesimal condensations that would ‘hybrid accrete’ to form ‘super-Earth’ Uranus and Neptune. (Core accretion of planetesimals formed by gravitational instability, hence ‘hybrid accretion’. [Thane Currie 2005]) Orbit clearing by Uranus and Neptune is assumed to have scattered the leftover planetesimals into the scattered disc, as scattered disc objects (SDOs), presumably prior to 4,567 Ma.

Protoplanetary SDOs are suggested to have condensed with a significant percentage of highly-volatile ices, such as CO, N2, CH4, NH3, CO2 and etc., whereas more volatilely-depleted KBOs apparently condensed primarily from water ice, making KBOs the water worlds of the solar system.

If highly-volatile SDOs had undergone similar aqueous differentiation in orbit-clearing scattering prior to 4,567 Ma and found their way to Earth like suggested KBO gneiss-domes, then there should be rock on Earth older than 4,567 Ma, which is not the case, so highly-volatile ices must have sacrificially clamped comet and SDO temperatures below the melting point of water ice during pre-4567 Ma binary spiral-in mergers and hybrid accretion events. As a result, SDOs are suggested to contain numerous internal voids created by the sublimation of volatile ices, with internal compositions like pithy Styrofoam balls used in holliday craft projects. Suggested subsequent SDO differentiation into supracrustal rock and granite batholiths is covered in other sections.
………………..

Secondary debris-disk reservoir KBOs:

Our former binary-Sun is suggested to have spiraled in and merged in a luminous red nova (LRN) at 4,567 Ma, creating a secondary debris disk from which asteroids, chondrites and
Kuiper belt objects (KBOs) condensed. The low-inclination, low-eccentricity typical binarity of classical Kuiper belt objects (cubewanos) speaks to their having condensed in situ, not having been scattered there by a mythical planetary migration of Neptune during the late heavy bombardment. Plutinos are suggested secondary debris-disk condensates as well.

Binary spiral-in mergers of KBO water worlds are suggested to cause ‘aqueous differentiation’, melting salt-water oceans in their cores which precipitate dissolved mineral species of mineral grains, forming sedimentary cores which can undergo lithification and even diagenesis and metamorphism to form rocky gneiss-dome cores with hydrothermal-rock mantles. So ‘geochonology’ of gneiss domes gives the age of their spiral-in mergers.
………………..

Perturbation of trans-Neptunian objects:

Our Sun-Companion system is suggested to have undergone 4 billion years of core collapse, feeding off the potential energy of the Companion’s close-binary components to increase the wide-binary Sun-Companion period around the SSB (assumedly at an exponential rate) until the Companion’s binary components asymmetrically merged at 543 Ma, giving the Companion escape velocity from the Sun. After 4 billion years of core collapse, the Companion’s apoapsis from the Sun may have reached the (circa 2000 AU) distance of the inner edge of the inner Oort cloud, explaining the ‘Kuiper cliff’ fall off of planetesimals beyond about 50 AU as orbit clearing by the Companion and explaining the shepherding of Oort cloud comets into the Inner Oort cloud in a circum(wide)binary SSB-centric (not heliocentric) orbit beyond the Companion at apoapsis.

As the Sun and Companion spiraled out from the SSB, by Galilean invariance with respect to the Sun, the SSB spiraled out through the Kuiper Belt and scattered disc, passing through the cubewanos from 3.8 – 4.1 Ga (causing the late heavy bombardment) and perturbing binary KBOs to spiral in and merge, initiating aqueous differentiation. The perturbation mechanisms since the loss of the Companion and the SSB are less mechanistic and may be related to the loss of the angular momentum of the Companion which may have previously stabilized the solar system against external perturbation from passing stars and ‘globule clusters’ (see section DARK MATTER). Additionally, the solar system may have a large reservoir of ‘detached objects’ in highly eccentric orbits of which Sedna and 2012 VP-113 are two members, with the vast majority beyond detection near perihelia where detached objects spend the lion’s share of their orbit. (Assumedly detached objects have been pumped into high-eccentricity long-period orbits by former Sun-Companion resonances, but with the loss of the Companion’s gyroscopic stability, they may be induced to suffer angular momentum loss by by external perturbations, causing their perihelia to spiral down into the planetary realm where the giant planets eventually perturb them in to the Sun or out of the inner solar system. External perturbation tending to torque objects forward in long-period orbits tends to increase the magnitude of the angular momentum vector, raising their perihelia, but perturbations retarding objects in their orbits decrease the magnitude of the angular momentum vector, lowering perihelia.)

Ignoring Oort cloud comets, detached objects may be the TNO reservoir responsible for the largest Earth impacts in the Phanerozoic Eon since the loss of the Companion, assumedly perturbed by passing stars and dark-matter globule-clusters/giant-molecular-clouds (see section DARK MATTER). And the vast majority of the detached object reservoir are beyond the present limits of detection, so we can only calculate the extent of the reservoir by observing the aphelia tip of the iceberg.
………………..

Aqueous differentiation into sedimentary cores:

Aqueous differentiation is initiated when planetesimals collide or when binary planetesimals spiral in and merge to melt water ice and form salt-water oceans in their cores, creating a solution of mineral species from the dissolution of nebular dust. Microbes may catalyze chemical reactions, greatly increasing the number and complexity of precipitated minerals.

Precipitated (authigenic) mineral grains continue to grow through crystallization until they fall out of suspension due to negative buoyancy in microgravity. The gravitational acceleration, and thus buoyancy, is also dependent on location within the planetesimal, ranging from zero at the gravitational center and rising to a peak value some 2/3 of the way to the surface, so aqueously-differentiated planetesimal cores should have the largest authigenic mineral-grain size in the center, barring metasomatic pegmatites.
………………..

pH spike during pressure venting:

The partial pressure of CO2 in trapped gas pockets between the core ocean and the overlying ice-water boundary of the icy mantle forces carbon dioxide into solution where it reacts with water to form carbonic acid, lowering the pH. Following binary spiral-in mergers when internal temperatures are still rising and expanding the core ocean by melting, subsidence faults in the icy mantle would periodically vent the trapped gas to the surface.

A sudden drop in pressure on the core ocean would cause dissolved carbonic acid to convert to gaseous CO2 by nucleating on suspended mineral grains which the bubbles would float to the surface creating a froth of CO2 foam at the ice-water boundary, like the effect of sugar added to a carbonated drink. And the repetition of gradually rising CO2 partial pressure followed by its sudden venting would cause ‘sawtooth’ pH fluctuations over time.

The solubility of aluminum salts is particularly pH sensitive, so pressure overlying planetesimal oceans could indirectly control the reservoir of dissolved aluminous species in solution. Aluminous species solubility is U-shaped with respect to pH with an inflection point at about 6-1/2 pH (Driscoll and Schecher, 1990). A rise in pH from 3.5 to 6.5 would decrease the aluminous species solubility by a factor of more than 100,000, effectively dumping the entire reservoir of dissolved aluminous species, presumably in a precipitation of felsic feldspar minerals.

Dissolved aluminous species vs. pH with trough at 6.5 pH

Silica solubility, by comparison, is particularly temperature sensitive, so quartz grains will precipitate at the cold ice-water boundary where silica solubility is at a minimum, and a sudden venting of pressure to the surface may cause the surface of the ocean to flash boil, further concentrating solutes and lowering its temperature. So with quartz precipitation at the ice-water boundary and catastrophically precipitated feldspar mineral grains floated to the surface by nucleating CO2 bubbles, the floating mass buoyed up by CO2 foam is suggested to have a felsic composition. And mineral grains would continue to grow by crystallization as long as they remain buoyantly trapped at the surface.

A frothy mass, perhaps cemented with slime bacteria, is suggested to have a degree of mechanical competency, forming a cohesive floating mat. When the mat became ‘waterlogged’ by negative buoyancy, it would begin to sag until finally sinking as a two-dimensional membrane onto the more mafic sedimentary core, and the larger surface area (circumference) at the ice-water boundary would be forced to crumple when mapping onto the smaller surface area of the sedimentary core, bunching into disharmonic convolute folds or ptygmatic folds as it fell onto the core below. Some ptygmatic folds in migmatite double back on themselves like alpine hairpin turns or ribbon candy.
………………..

Ptygmatic Folds in Gneiss Migmatite from Helsinki Finland
–used with permission of Sameli Kujala, http://www.flickr.com/photos/sameli/2040126969/
Conventional metamorphic theory might suggest that the felsic granite leucosome was intruded as a flat dike, followed by folding of the rock like the bellows in an accordion, presumably due to a high degree of elevated-temperature plasticity. Bellows are readily able to fold by displacing air, but since rock is essentially incompressible, hypothesized centimeter-scale folding is highly problematic. Metamorphic theory of migmatites requires felsic leucosomes to have a lower melting point.than the mafic melanosome, and yet in this case, the felsic leucosome dike apparently folds while remaining entirely intact as the mafic melanosome is apparently squeezed out from in between like toothpaste.
Conventional metamorphic theory is untenable in the face of a simple alternative, that of a sedimentary origin within a planetesimal ocean in which the phaneritic, authigenic grain size can be attributed to micro gravity.
Quartz solubility is highly temperature sensitive and feldspar is highly pH sensitive, so quartz precipitates at the cold-junction ice water boundary and feldspar precipitates when gas pressure (containing a partial-pressure of CO2) over the internal ocean is suddenly vented through a fissure allowing it to escape toward the surface, causing CO2 to bubble out of solution. As carbonic acid is converted to CO2 bubbles, the pH rises, precipitating feldspar, and the CO2 bubbles nucleate on the feldspar grains floating them to the surface where they add to the quartz grains, forming a felsic layer.
Perhaps silica gel or slime bacteria lend a degree of mechanical competency to the felsic ‘mat’ causing it to fold and bunch together into ptygmatic folds when it finally became water logged and sank onto the authigenic mafic ‘sand’ of the sedimentary core. Then over time, diagenesis and lithification turn the planetesimal sediments to rock, just as on earth.

If mafic mineral species solubilities are less affected or are affected differently by pH, then cyclical pH variation will tend to form alternating felsic and mafic layers of authigenic minerals as is observed in migmatite, gneiss and sometimes schist.

Diagenesis shrinks the sedimentary core by forcing out the water, and as the core shrinks in volume, the authigenic sedimentary layers are forced into smaller circumferences, forcing the layers to fold in a process of ‘circumferential folding’. A good analogy are grapes dehydrating to form a raisins.

Conventional geology, by comparison, struggles to explain leucosome and melanosome segregation (supposed anatexis) and subsequent small-scale folding, other than large-scale folding readily attributable to plate tectonics (synclines and anticlines). Conventional geology is inclined to misinterpret sharp isoclinal folds as sheath folds cut through the nose of the fold because it has no good explanation for sharp small-scale (isoclinal) folding at various scales down to centimeter-scale hand-samples. Because of the lack of understanding of the nature and origin of felsic-mafic segregation and subsequent folding, it’s largely ignored in the literature with the concentration on better understood processes such as the degree of prograde/retrograde metamorphism, overprinting, and etc. The phone book analogy, which works so well to explain tectonic folding up into the void of the atmosphere, fails to explain small-scale folding at depth in solid rock where metamorphism is suggested to occur because there’re no voids to fold into, but the alternative raisin analogy of loosely-packed sediments with escaping hydrothermal fluids leaving behind voids which forces folding. So conventional geology struggles to explain folding while the alternative ideology has folding forced on it.

Diagenesis of sediments on earth also results in volume reduction, but because of Earth’s enormous size, no perceptible reduction in circumference occurs and hence no circumferential folding is forced to occur in terrestrial diagenesis, so horizontal layers of sedimentary rock are almost always terrestrial. Also surface sedimentation in terrestrial sedimentary rock does not reach the temperatures attained in planetesimal cores with its concomitant loss of mineral volume in the form of hydrothermal fluids nearly saturated with mineral species.

In aqueous differentiation of icy planetesimals, when primary sedimentation runs to completion in forming gneissic sedimentary cores, hydrothermal fluids expelled during diagenesis of the core precipitate hydrothermal mineral-grain sediments with different chemistry over top of the gneissic core, namely, sandstone/quartzite, schist and carbonate rock (limestone and dolostone) sediments, which ultimately form hydrothermal-rock mantles over gneissic cores.

Sedimentary diagenesis proceeds to lithification, like on Earth, but planetesimals may have one more trick up their sleeve. When a deep planetesimal ocean freezes solid, the pressure generated by the expansion of water in its phase change to ice may cause lithified cores to undergo high-pressure metamorphism, converting sedimentary rock to metamorphic migmatite, gneiss, quartzite and marble, which is comparatively rare on Earth.

A major difference between authigenic terrestrial sediments and authigenic planetesimal sediments is mineral grain size. On the surface of our high-gravity planet, precipitated authigenic mineral grains fall out of aqueous suspension at clay size to become sequestered in sedimentary layers which lithify into mudstone, but in the microgravity deep inside planetesimal oceans, dispersion apparently allows mineral grains to grow by crystallization to reach the size typically found in migmatite and gneiss before falling out of aqueous suspension (although in the case of granulite metamorphism, the mineral grains have typically recrystallized). Gravitational acceleration increases from the center to a maximum value part way between the core and the surface, with zero gravitational acceleration at the center, so mineral grain sizes decrease over time from the inside out of sedimentary planetesimal cores, except for leucosomes and metasomatic pegmatites which may grow to prodigious size on surfaces exposed to hydrothermal fluids.

Authigenic Gneiss with Sharp Isoclinal Folds

In conventional geology, the supposed segregation of felsic and mafic minerals into leucosome, melanosome and mesosome layers by metamorphism of protolith rock to form migmatite gneiss is explained by the partial melting (anatexis) of lower-melting-point (primarily felsic) minerals and the extrusion of this melt down a “potential force gradient.” “The consensus today is that both in situ melt and externally derived melt are present in most migmatites (Kriegsman, 2001).” (Urtson, 2005) This means that adjacent layers alone can not explain the local enrichments and depletions of felsic and mafic layering, and so non-local externally-derived melt is needed for mass balance. In an aqueous planetesimal setting, adjacent felsic and mafic leucosomes and melanosomes have the entire planetesimal ocean to draw from. “Comingling and mixing of mafic and felsic magmas” is also suggested as an explanation for alternating felsic/mafic layers. (Sandeman et al., 2000)

Conventionally, gneiss domes are divided into two classes: fault related and fault unrelated.  Larger gneiss-dome systems are divided into evenly spaced and unevenly spaced.  Evenly spaced dome systems are considered to be instabilities caused by vertical-density or -viscosity contrast and horizontal loads, leading to buckling.  Unevenly spaced dome systems are associated with fault development or “superposition of multiple deformational phases.” “In nature, gneiss domes are often produced by superposition of several dome-forming mechanisms. This has made determination of the dynamic cause of individual domes and dome systems exceedingly challenging.” (Yin, 2004)

Rayleigh–Taylor (RT) instability is a favored explanation for the formation of evenly-spaced gneiss domes which is sometimes called a fingering instability where a finger is theorized to spread into a mushroom cap to explain concentric layering in ellipsoid gneiss domes.  RT instabilities, however, fail to explain the typical sedimentary basements: “In some, the lowest horizon of the mantle consists of basal conglomerate with boulders of the same gneiss that forms the dome; in others, the basement stratum is a layer of quartzite, above which follow dolomite and mica schist; and in still others, dolomite forms the basement.” (Eskola, 1948)

Section View of a Differentiated Comet

The basement horizon of quartzite, carbonate rock and conglomerate in gneiss-dome mantles can only be explained in conventional geology with secondary ad hoc mechanisms, but in aqueous differentiation, the concentric layering of gneiss domes are merely sedimentary growth rings transitioning to hydrothermal sedimentation, followed by diagenesis, lithification and metamorphism. So sedimentary migmatite, gneiss and schist are on an equal footing with the mantle layers of quartzite and carbonate rock. And conglomerate or graywacke outer layer on gneiss domes is merely grinding of the rocky core against the ice ceiling as the freezing ocean finally closes in on the core, creating a clastic frosting on authigenic sedimentary core. Often the conglomerate pebbles, cobbles and boulders in the frosting conglomerate are highly polished with an indurated (case-hardened) surface as freezing tends to reject dissolved minerals, creating a final spike in dissolved mineral species that deposit (plate out) on cobbles and pebbles.

The mantled domes apparently represent earlier granite intrusions related to a orogenic period. The plutonic mass was later eroded and levelled, and thereafter followed a period of sedimentation. During a subsequent orogenic cycle the pluton was mobilized anew and new granite magma was injected into the plutonic rock at the same time as it was deformed into gneiss, causing its migmatization and granitization, or palingenesis.

(Eskola, 1948)

Our former binary Companion may have somewhat stabilized the solar system prior to its hypothesized loss at 542 Ma. “Culler et al. [2000] studied 179 spherules from 1 g of soil collected by the Apollo 14 astronauts, and found evidence for a decline in the meteoroid flux to the Moon from 3000 million years ago (Ma) to 500 Ma, followed by a fourfold increase in the cratering rate over the last 400 Ma.” (Levine et al., 2005) But the 400 Ma comes from the 400 million-year bin size used in the study.
—————

SUPRACRUSTAL ROCK AS A DIFFERENTIATED DEBRIS-DISK COATING ON SCATTERED-DISC OBJECTS:

Supracrustal rock of Belcher Islands and rimming the eastern shore of Nastapoka arc, Hudson Bay, suggested as the lithified crust of a 430+ km scattered disk object that impacted the Laurentide ice sheet, some 12, 900 years ago.

 

 

Proterozoic supracrustal rock from Labrador Trough in Quebec, Canada with its characteristic reverse faults is suggested to have differentiated on the surface of scattered-disk objects (SDOs) from a secondary debris-disk coating accreted after 4,567 Ma. The top-heavy crust sloughed off during the NE-to-SW approach of the 12,800 ya Nastapoka arc SDO impact and rafted atop the melting Laurentide ice sheet to end up in the Labrador Trough.

Introduction:

Super-earths Uranus and Neptune and the scattered disc:
Uranus is suggested to have formed by hybrid accretion of planetesimals condensed by gravitational instability (GI) (core accretion of GI planetesimals = hybrid accretion [Thayne Curie 2005]) at the inner edge of our circumbinary protoplanetary disk which formed beyond our former binary Sun. In clearing its orbit of more than its own weight of planetesimals (comets), Uranus fell into a lower heliocentric orbit tilting its spin axis. Neptune was the second hybrid-accretion super-Earth in the two-planet super-Earth cascade. Orbit clearing by Neptune evaporated most of the leftover comets to the scattered disc, most with aphelia beyond the 1:3 orbital-period resonance with Neptune.

Scattered disk objects (SDOs):
So typical high-eccentricity/high-inclination of SDOs are suggested to be due to their having been scattered there by Uranus and Neptune during their orbit clearing phases, assumedly prior to 4,567 Ma. SDOs condensed directly from the Bok globule protoplanetary disk, assumedly with a highly oxidized composition due to the bitterly cold temperatures common in giant molecular clouds. Stars, planets, moons and planetesimals formed by GI often fragment due to excess angular momentum forming binary pairs, but the subsequent scattering by Uranus and Neptune would have perturbed binary pairs to either spiral in and merge or spiral out and dissociate, so the scattered disc is assumed to be populated by solitary SDOs in scattered orbits. The secondary debris disk may have also accreted as a coating of variable thickness onto preexisting SDOs.

Kuiper-belt objects (KBOs):
Asteroids, chondrites and KBOs are suggested to have condensed by GI from the secondary debris disk created by the spiral-in merger of our former binary Sun at 4,567 Ma, of which Mercury may be the largest hybrid-accretion asteroid. Asteroids condensed first at the highest ambient temperatures and therefore are the most volatilely depleted of debris-disk planetesimals, but even KBOs are assumedly more volatilely depleted (in volatile oxygen et al.) than protoplanetary comets and SDOs. In situ condensation of classical KBOs (cubewanos which nominally orbit between a 2:3 and a 1:2 resonance with Neptune) explains their typical low-eccentricity and low-inclination orbits. Cold classical KBOs are also likely to be composed of binaries of similar size and similar color which formed by fragmentation during GI.

Former Companion to the Sun:
Our solar system is suggested to have formed as a quadruple star system that formed two close-binary pairs binary-Sun and binary-Companion with a wide-binary separation. (Resonant) stellar core collapse caused ‘secular perturbation’ of the system, causing the close-binary pairs to spiral in, transferring their orbital energy to the wide-binary pair, causing it to spiral out at an exponential rate. Binary-Sun spiraled in to merge in at 4,567 Ma and binary-Companion spiraled in to merge some 4 billion years later at 543 Ma in an asymmetrical merger that gave the newly-merged Companion escape velocity from the Sun.

Solar-system barycenter (SSB):
The solar system barycenter (SSB) was the point around which the Sun and binary-Companion orbited for 4 billion years, and as the wide-binary Sun-Companion separation increased at an exponential rate over time. From a heliocentric perspective (by Galilean relativity) the SSB effectively spiraled out into the Kuiper belt and scattered disk at an exponential rate, perturbing planetesimals by proximity (see section: PLANETS, MOONS, DWARF PLANETS AND PLANETESIMALS). The late heavy bombardment of the Hadean Eon, then is suggested to have been caused by the perturbation of the SSB on KBOs, first the Plutinos around 4.22 Ga followed by the cubewanos between 4.1 and 3.8 Ga. The Archean represents the SSB transit between the 1:2 resonance with Neptune and the 1:3 resonance with Neptune, reaching the 1:3 resonance with Neptune at 2,500 Ma, ushering in the Phanerozoic Eon by reaching the main scattered disc reservoir of protoplanetary SDOs.

SSB perturbation is suggested to have caused the spiral-in merger of many binary planetesimals, initiating aqueous differentiation which melted saltwater oceans in their cores. Authigenic sedimentary cores are suggested to have precipitated in core oceans which went on to lithify and metamorphose into tonalite–trondhjemite–granodiorite (TTG) series gneiss domes of the Archean.
………………..

Proterozoic supracrustal rock:

The SSB is suggested to have reached Neptune’s 1:3 resonance (62.6 AU) at about 2,500 Ma, ushering in the Proterozoic Eon as it began perturbing protoplanetary SDOs, which are essentially comets. (In fact, short-period Jupiter-family comets are assumed to have originated in the SDO.) Most dumbbell-shaped contact-binary comets are presumed to have merged during the earlier orbit clearing (scattering) phase of Uranus and Neptune prior to 4,567 Ma, so the thermal and aqueous differentiation which melted/precipitated prototypical supracrustal rock during the late Archean to mid Proterozoic Eons had to await the arrival of the SSB.

Supracrustal rock is rife with desiccation-cracked mudstone, mud chips, cross stratification, rippled layers and turbide, suggestive of near shore deposition followed by episodes of regression, causing desiccation cracks. Desiccation cracks suggest supracrustal rock formation on SDO surfaces with intermittent flooding and volcanic episodes. But what keeps surficial supracrustal rock with a density close to that of granite (2.65 g/ml) from collapsing into the interior of planetesimals with an average density less than 1 g/ml? — perhaps hollow interiors.

Hollow SDOs with top-heavy supracrustal rock?:
If tidal flexing of SDOs by the SSB creates internal heating in SDOs with highly-volatile ices, like N2, CO, methane ices, then SDOs could rapidly lose a significant portion of their original mass by sublimation, hollowing out their cores which get the hottest, but supported from collapse by the natural arch support created in the overlying material, composed of dust and higher temperature ices such as CO2 and water ice. And since gravity is zero at the ‘center of gravity’ of any object, loose material would be gravitationally attracted to the walls rather than to the center.

Fluvial or near-shore deposits in supracrustal rock:
Then as the temperature and pressure in the interior walls rose above the melting point of water ice, salt water may have been forced to the surface in the form of geysers and water volcanoes, dropping its dissolved solutes out of solution as precipitated mineral grains as the water boiled off into the vacuum of space. The evidence for near shore or fluvial deposits in supracrustal rock in Richmond Gulf adjacent to Nastapoka arc are numerous and varied: desiccation-cracked mudstone, mud chips, cross stratification, rippled layers, turbide, pillow lava and ropy basalt (Chandler 1988). Water of sufficient depth would freeze over, but lesser quantities might boil dry, creating characteristic desiccation cracks and mud chips.

Characteristic reverse faults in supracrustal rock:
Hollowing out the core by sublimation and mantle melting caused by SSB tidal flexing would densify the mantle, resulting in comet-quake subsidence which would reduce the original SDO surface area, creating characteristic reverse faults as supracrustal rock is continually forced to map onto ever-decreasing surface area. ‘Reverse faults’ are the opposite of ‘normal faults’, in which compressive shortening forces the hanging wall over top of the footwall at steep angles greater than 45 degrees.

Supracrustal rock in impact strewn fields:
A hollowed out SDO with top-heavy supracrustal rock may typically fragment in planet/moon impacts like comet Shoemaker-Levy 9, due to the differential tidal gravity and atmospheric drag, so supracrustal strewn fields may be the rule rather than the exception in differentiated SDO/comet impacts.

Comet Tempel 1 appears to have a yawning gap in its overlying (supracrustal-rock?) crust which may have opened up during the thermal and aqueous differentiation which caused subsidence, reducing its volume and surface area, yet its overall density of only 0.62 g/ml suggest a hollow core. So Temple 1 may be a rather typical differentiated SDO.

Comet Tempel 1, a Jupiter family believed to have originated from the scattered disc.  Note the yawning gap in the suggested surficial supracrustal rock.

Comet Tempel 1, a Jupiter family believed to have originated from the scattered disc. Note the yawning gap in the suggested surficial supracrustal rock.

Sudbury Basin:

In his 1903 account of his 1901 trip to examine Nastapoka arc supracrustal rock, A. P. Low repeatedly remarks on similarities between Huronian Supergroup in the Great Lakes region and the Nastapoka and Richmond Gulf Groups of Eastern Hudson Bay. Indeed, the suggested End Pleistocene Nastapoka arc SDO may have been reunited with the late Paleoproterozoic Sudbury SDO after a separation of 1,849 million years.

A hollow Sudbury SDO may have fragmented prior to Earth impact in a trailing strewn field to the west, but which may have been from the north if Laurentian rotation remained relatively unchanged until the Grenville age. Sudbury breccia (1.85 Ga) overlays Gunflint chert. “Most of the impact layer consists of breccia—a mixture of fragments broken from the underlying iron-formation and cemented together (Figure 4). These fragments represent pieces of seafloor that were ripped loose by impact-related earthquakes and carried down a submarine slope.” (Minnesota’s Evidence of an Ancient Meteorite Impact) Alternatively, Gunflint chert (SDO crust) may have become covered with breccia from its own local impact in the trailing strewn field, rather than from breccia created in secondary earthquakes and slumping caused by the distant Sudbury impact almost 800 km away. (See breccia, think primary effects from local impact rather than secondary effects from distant impact.)

Labrador Trough, Grenville Province, supracrustal rock and iron-ore mining:

Suggested ice sheet witness marks from the catastrophic melting of the Laurentide ice sheet caused by the Nastapoka SDO impact may be mapped across Labrador Peninsula into Labrador Trough and in the adjacent Churchill Province to the East and down into the Grenville Province to the south. Top-heavy supracrustal rock is suggested to have sloughed off from the Nastapoka arc SDO in its suggested northeast to southwest approach, with supracrustal rock impacting the ice sheet over the east edge of Labrador Peninsula and over Ungava Bay further east.

Suggested path (red) of Nastapoka arc scattered-disk object (comet), 12,800 years ago.  Suggested path (black) of sloughed-off supracrustal rock that rafted into the Labrador Trough atop chunks of the Laurentide ice sheet.

Suggested path (red) of Nastapoka arc scattered-disk object (comet), 12,800 years ago. Suggested path (black) of sloughed-off supracrustal rock that rafted into the Labrador Trough atop chunks of the Laurentide ice sheet.

Portions of Churchill Province to the East and Labrador Trough to the west and south, showing the final location of supracrustal rock which is suggested to have rafted into the Labrador Trough from Ungava Bay and further north on Labrador Peninsula atop melting chunks of ice sheet.  Red witness marks suggest the direction of travel.

Portions of Churchill Province to the East and Labrador Trough to the west and south, showing the final location of supracrustal rock which is suggested to have rafted into the Labrador Trough from Ungava Bay and further north on Labrador Peninsula atop melting chunks of ice sheet. Red witness marks suggest the direction of travel.

Smith Island, Hudson Bay (60.78, -78.38) is the extension of a horizontal stripe of Proterozoic rock across the northern tip of the Labrador Peninsula. Because the Smith Island supracrustal rock is more heavily weathered than supracrustal rock in Labrador Trough and because it doesn’t appear to line up with the suspected Nastapoka arc SDO trajectory, it’s suspected to be part of an earlier SDO imact or part of a far-larger TNO impact that ferried it to Earth from beyond Neptune. The Smith Island sequence does, however, appear to be lined up with the center of Upper Hudson Bay, suggesting that it may have sloughed off from a still-larger impact (or far more powerful retrograde impact) in the Late Devonian Period that formed the Upper Hudson Bay impact basion, which may, perhaps, be related to the Late Devonian extinction event.

One chunk of supracrustal rock from the Nastapoka arc SDO appears to have hit the ice sheet around the bay of Leaf River, QC, Canada (58.92, -69.77), but this mass of supracrustal rock appears to have gotten largely hung up at Koksoak River, Kuujjuaq, QC, Canada (57.77, -69.37), presumably by the rough terrain of the Koksoak River valley.

The bulk of supracrustal rock that ultimately rafted into Labrador Trough may have hit over Ungava Bay, slightly east of Labrador Peninsula, and swept south southwest across Churchill Province running aground in Labrador Trough.

Schefferville area iron ore:

“In the Schefferville area, iron formation crops out in long linear north-west trending belts, parallel to the regional trend of the Hudsonian Orogeny. Not all the exposed iron formation is mined, however as much of it is too lean to be economic. Mines are located in areas that underwent secondary alteration during the Cretaceous period, 130 – 60 million years ago. At that time, the whole of Labrador was uplifted to form an exposed land mass and subjected to intense weathering, probably in a tropical environment. During the weathering process, ground water circulated deep into the iron and leached out the silicate and carbonate minerals to leave a highly porous rock composed largely of iron oxides. Later solutions moved through the porous rock and deposited more iron oxides and hydroxides in the pores, producing an ore which is not only highly enriched in iron (65% iron) in comparison to normal iron formation (35% iron), but also soft and crumbly and therefore easy to mine.”
(Rivers and Waddle 1979)

Alternatively, rather than metasomatically concentrating iron ore over an extended period during the Cretaceous, perhaps the iron ore concentration was fluvial and castastrophic during the melting of the Laurentide ice sheet. (The suggestion of a Cretaceous period of deformation comes from Cretaceous tree trunks and other floral fossil remains in the iron-ore sediments, which could have been fortuitously assembled in the castrophic melting event, and thus a red herring.)
…………………..

Chandler, F.W., (1988), THE EARLY PROTEROZOIC RICHMOND GULF GRABEN, EAST COAST OF HUDSON BAY, QUEBEC, Energy, Mines and Resources Canada

Rivers, Toby and Wardle, Richard, (1979), LABRADOR TROUGH: 2.3 BILLION YEARS OF HISTORY, Mineral Development Division, Department of Mines and Energy, St. John’s
—————

HYDROTHERMAL QUARTZITE, CARBONATE ROCK, AND SCHIST:

This section will concentrate on the suggested precipitates resulting from the aqueous differentiation of icy-planetesimals, presumed to be from the Kuiper belt and most likely the result of spiral-in mergers of binary planetesimals.

Scattered disk objects (SDOs):
SDOs are presumed to be presolar, having condensed from the protoplanetary disk, and they owe their their present eccentric orbits to having been scattered outward by the orbit clearing of Uranus and Neptune. SDOs are presumably mostly solitary objects which may have originally formed as binaries by fragmentation during gravitational instability, but the binaries were either perturbed to spiral in and merge or spiral out and dissociate in the process of being scattered outward prior to 4,567 Ma.

Kuiper belt objects (KBOs):
KBOs, including Plutinos, cubewanos, are suggested to have condensed in situ by gravitational instability (GI) from a secondary debris disk that formed from the aftermath of the spiral-in merger of our former binary Sun at 4,567 Ma. Excess angular momentum during GI often causes fragmentation forming binary pairs, and indeed, many of the cold classical Kuiper belt objects (cubewanos) are comprised of similar-sized and similar-colored binary pairs. The debris-disk was presumably more volatilely depleted than the protoplanetary disk, with SDOs trending toward low-temperature ices like CO, CH4, N2 and CO2. and with KBOs trending toward higher-temperature water ice, making KBOs water worlds.

In the initial phase of icy-planetesimal ‘aqueous differentiation’ (defined as internal melting), perhaps primarily cause by binary spiral-in mergers, internal heating melts water ice, liberating nebular dust. Dissolution of nebular dust increases mineral species solutes in solution until reaching (super)saturation, whereupon mineral grains precipitate and grow through crystallization until their negative buoyancy causes them to fall out of solution to form a sedimentary core.

When aqueously-differentiated planetesimals reach thermal equilibrium, the ocean begins to freeze over, cutting off the supply of nebular dust from the icy overburden and concentrating the mineral species in solution as freezing water tends to exclude solutes. The expansion of freezing builds pressure in the ocean, causing lithification and diagenesis of the sedimentary core, expelling hot hydrothermal fluids with high concentrations of solutes in solution. The type of mineral precipitation changes over time and over distance from hydrothermal vents during ‘freeze out’ of the ocean.

Pressure solution/dissolution, leaching and metasomatism during diagenesis and lithification of the sedimentary gneissic core expels hot aqueous fluids, partially or completely saturated with salts, minerals, (cat)ions and other species that may rapidly reach (super)saturation in the cooler ocean above, precipitating mineral grains and crystallizing on suspended sediments, particularly in the vicinity of hydrothermal vents. Mineral grains grow by crystallization to a characteristic size for the buoyancy of the planetesimal ocean with its local (thermal) circulation rate before falling out of suspension to be mostly sequestered from further growth by crystallization.

Authigenic mineral grain size is related to local buoyancy (and circulation rate) which is a function of the planetesimal mass and roughly the relative distance between the surface and the gravitational center. (From the center of the Earth to its surface, zero gravitational acceleration at the ‘center of gravity’ climbs to a maximum value a little more than half way to the surface, followed by decreasing acceleration from the maximum to the surface.) Assuming any sedimentary core lies below the point of maximum gravitational acceleration, authigenic mineral grain size should decrease from the center outward, excepting metasomatic pegmatites which may grow to fantastic size in sheltered areas. The characteristic, authigenic sand-grain size in Wissahickon schist is about 450 microns in diameter (.45 mm).

Mantled gneiss domes:
In mantled gneiss domes, the authigenic migmatite-gneiss core is typically surrounded by a concentrically-layered mantle with an outward progression of gneiss to sandstone/quartzite to carbonate-rock (limestone, dolostone or marble) to schist.

Note the typical gneiss-dome mantle sequence: gneiss>>quartzite/sandstone>>limestone/dolostone/marble>>schist Reference:  Fourteen Geologic Cross Sections through the Gneiss Domes near Baltimore Maryland Geological Survey, 1937; Volume 13, Plate 32

Note the typical gneiss-dome mantle sequence: gneiss>>quartzite/sandstone>>limestone/dolostone/marble>>schist
Reference: Fourteen Geologic Cross Sections through the Gneiss Domes near Baltimore
Maryland Geological Survey, 1937; Volume 13, Plate 32

Skolithos trace fossils in quartzite:
On earth, tube worm communities commonly surround hydrothermal vents. As tube worms extend their tubes to avoid burial as sand settles out of suspension around hydrothermal vents in planetesimal oceans, their addition of organic material, weakens the subsequent quartzite, making it more susceptible to erosion. Tube-worm trace fossils in quartzite may be interpreted as Skolithos trace fossils. Large platform-sized dwarf planet oceans, in which silt-sized authigenic mineral grains fall out of suspension in quiescent regions, may precipitate coarser authigenic sand in the vicinity of hydrothermal vents due to fluid flows, hydrothermal fluid issuing directly from the vent itself and secondary thermal-gradient flows. So authigenic sand, more typical of smaller gneiss-dome-sized planetesimals, may be found on larger platform-sized compound-planetesimal platforms in the vicinity of hydrothermal vents, and Skolithos trace fossils (along with sand-grain size) may help to differentiate gneiss-dome-planetesimal sand from platform-planetesimal sand, assuming gneiss-dome planetesimals do not (typically) support macroscopic life forms.

Quartzite boulder with highly-indurated surface from the Susquehanna River at Millersburg, PA with end-on view of Skolithos trace fossils as dimples.

Quartzite boulder with highly-indurated surface from the Susquehanna River at Millersburg, PA with end-on view of Skolithos trace fossils as pockmarks.

Quartzite boulder with indurated surface from the East branch of the Susquehanna River near the PA New York border with Skolithos trace fossils.

Quartzite boulder with indurated surface from the East branch of the Susquehanna River near the PA New York border with Skolithos trace fossils.

‘Black smoker’ chimney structures form over hydrothermal vents on earth in areas where tectonic plates are separating like at the mid-Atlantic ridge. These chimney structures can reach heights of 40 meters like ‘Godzilla’ in the Pacific Ocean before toppling over from their own weight and then regrowing, creating mounds of hydrothermal rock. Chimney structures may similarly form, topple and reform in planetesimal oceans, creating similar mounds of hydrothermal schist, but the forces causing chimney collapse in planetesimal oceans may be more seismic in nature as the sedimentary core progressively shrinks during diagenesis and lithification, leading to dramatic ‘planetesimal quakes’.

Euhedral garnets in schist:
Round euhedral almandine garnets in schist suggests Bernoulli suspension of garnets in hydrothermal fluid plumes in the low gravity of planetesimal cores, like a balloon trapped in the air leaving a vacuum cleaner. Sand grains to not attain such sizes, likely because quartz solubility is inversely proportionate to temperature, such that quartz grains precipitate and crystallize near the cold-junction ice-water ceiling and get dispersed at some distance from black-smoker chimneys, whereas the garnets may typically incorporate themselves into the chimney structures themselves. Round euhedral garnets do not appear to have grown attached on one side like metasomatic pegmatites, which typically grow in protected crevices.

Pegmatites in schist:
Pegmatites containing large sheets of mica often large feldspar crystals are typically imbedded in highly-indurated quartzite, but no garnets. If sand grains rain out of suspension at a short distance from hydrothermal vents, they do not appear to interfere with the growth of large mica and feldspar crystals, which suggests growth in protected areas on the ice ceiling or perhaps in overhangs or crevices. In Philadelphia Wissahickon schist, the largest crystalline masses of are kilogram-scale blocks of feldspar crystals with sheets of muscovite up to 10’s of square centimeters in area, frequently embedded in large masses of highly-indurated quartzite. Since schist pegmatites are hypothesized to be metasomatic (formed by aqueous crystallization), schist feldspars should be massive without exsolved lamellae structure like perthite which has cooled from a melt.

Wissahickon-schist pegmatite from Philadelphia: Mica and quartz

Wissahickon-schist pegmatite from Philadelphia:
Mica and quartz

Wissahickon schist pegmatite from Philadelphia:  gray, quartz;  white, albite(?);  pink, orthoclase

Wissahickon schist pegmatite from Philadelphia:
gray, quartz;
white, albite(?);
pink, orthoclase

Quartz stalactites in schist?:
Quartzite stalactites are suggested to have formed on ice ceilings overhanging hydrothermal vents, bathed in warm hydrothermal fluids. Quartz stalactites conduct heat, lowering the contact temperature below the solubility saturation temperature of quartz which crystallizes on the ceiling and stalactites until planetesimal quakes break them free to fall onto the growing planetesimal core. If euhedral garnets in schist are indeed formed over hydrothermal vents, then the occasional inclusion of small garnets in quartz stalactites bear out the suggestion of stalactite formation over hydrothermal vents. Quartz stalactites have sinewy longitudinal furrows like American hornbeam branches and trunks, depending on diameter, making them look very much like petrified wood. Stalactite cross sections range from perhaps 1 cm Dia to 1 meter Dia, but usually fractured at both ends so lengths are indeterminate. Cross-sectional aspect ratios vary widely, some thin almost like ribbons similar to flows in terrestrial caves, but more commonly with oval or nearly-circular cross sections.

Section of hypothesized quartz stalactite hanging from an icy ceiling into an internal Oort cloud dwarf-planet ocean over a hydrothermal vent over a sedimentary core undergoing diagenesis.  From the Wissahickon schist terrain along the Bells Mill Road tributary to the Wissahickon Creek, Philadelphia, PA.

Section of hypothesized quartz stalactite hanging from an icy ceiling into an internal Oort cloud dwarf-planet ocean over a hydrothermal vent over a sedimentary core undergoing diagenesis. From the Wissahickon schist terrain along the Bells Mill Road tributary to the Wissahickon Creek, Philadelphia, PA.

Quartz Stalactites of Various Cross Sections

Cross-sectional chunks of hypothesized quartz stalactites hanging from an icy ceiling into an internal Oort cloud dwarf-planet ocean over a hydrothermal vent over a authigenic sedimentary core undergoing diagenesis (the lithified and metamorphosed Baltimore gneiss-dome). The three chunks show wide variations in color, texture and cross-sectional aspect ratios, but all chunks are longitudinally striated to some degree. The red cross section chunk on the left has red garnets embedded in the ‘bark’ on the outside and was found a number of kilometers downstream from the center and right chunks with less terrestrial stream-tumbling wear.

Hypothesized quartz stalactite hanging from an icy ceiling into an internal Oort cloud dwarf-planet ocean over a hydrothermal vent over a sedimentary core undergoing diagenesis.  From the Wissahickon schist terrain--this chunk was found some 5 to 10 kilometers downstream from more pristine chunks along the Bells Mill Road tributary to the Wissahickon Creek, Philadelphia, PA.  This stalactite section is heavily particularly striated with deep furrows.  The corners and ridges have been heavily worn from tumbling downstream, but the furrows are fairly pristine.

Hypothesized quartz stalactite hanging from an icy ceiling into an internal Oort cloud dwarf-planet ocean over a hydrothermal vent over a sedimentary core undergoing diagenesis. From the Wissahickon schist terrain–this chunk was found some 5 to 10 kilometers downstream from more pristine chunks along the Bells Mill Road tributary to the Wissahickon Creek, Philadelphia, PA. This stalactite section is heavily particularly striated with deep furrows. The corners and ridges have been heavily worn from tumbling downstream, but the furrows are fairly pristine.

Hypothesized segments of linearly-striated quartz stalactites which grew from the ice ceiling over hydrothermal vents of Baltimore-gneiss-dome Oort cloud planetesimal. From the Wissahickon schist terrain, along the Bells Mill Road tributary to the Wissahickon Creek, Philadelphia, PA.

Hypothesized segment of linearly-striated quartz stalactite which grew from the ice ceiling over a hydrothermal vent of the Baltimore-gneiss-dome Oort cloud planetesimal. From the Wissahickon schist terrain, along the Bells Mill Road tributary to the Wissahickon Creek, Philadelphia, PA. Outside perimeters are longitudinally striated like driftwood, most with massive cross sections, but some with growth rings like this piece, and note the red garnets.

—————


ABIOTIC OIL AND COAL:

This section suggests an endothermic (icy-body) impact origin for many long-chain hydrocarbon reservoirs on Earth.

Structural Contour Map of Michigan Basin as an Icy-body Impact Basin that ushered in the Pennsylvanian Subperiod in North America

Structural Contour Map of Michigan Basin as an Icy-body Impact Basin that ushered in the Pennsylvanian Subperiod in North America

Protoplanetary TNOs vs. debris-disk comets:
Protoplanetary trans-Neptunian objects (TNOs) may have condensed from the protoplanetary disk by gravitational instability (GI) at sufficiently low temperatures to include a significant abundance of carbon ices. By comparison, comets are hypothesized to have condensed by GI slightly later from the secondary debris disk which formed following the hypothesized spiral-in merger of our former binary-Sun at 4,567 Ma. The higher-temperature debris-dust disk condensed comets depleted in the most volatile elements, including oxygen and carbon, explaining their surprisingly-high dust-to-ice ratio. So comet impacts may not form impact hydrocarbon reservoirs on Earth, as protoplanetary TNO impacts are hypothesized to do.

Rocky-iron impact craters vs. icy-body impact basins:

Icy-body ices as an impact shock absorber:
Work = force times change in distance, and similarly, Work = pressure times change in volume (W = PdV), so if ices are significantly more compressible than silicates, they will absorb a disproportionate share of an icy-body impact energy which may (largely) clamp the impact shock wave pressure below the shock formation shatter cones and below the melting point of target-rock silicates, masking icy-body impact structures from identification as such. Thus the relative compressibility of ices in icy-body impacts may lower the impact power by extending its duration during the rebound period of their icy precursors.

Secondly, extended, clamped shock-wave pressure may tend to clamp fractured target rock in place, largely preventing its (overturn) excavation into a bowl-shaped crater and its mixing to form polymict breccia.

Thirdly, the extended shock-wave duration in large icy-body impacts may provide sufficient time for deformation of the Earth’s crust into a basin, suggesting an impact origin for many round basins on Earth, such as the 450 km Nastapoka arc of lower Hudson Bay. And the larger and older the impact basin/crater, the greater the chance that tectonic events will have deform round impact basins into non-circular shapes, and smaller impact basins asymmetrically fill with sediments.

Finally, super-high shock-wave pressures may endothermically convert short-chain hydrocarbons (ethane, methane, and etc.) into saturated long-chain hydrocarbons, with the sustained shock-wave duration giving the excess liberated monotonic hydrogen gas time to diffuse away, largely preventing its re-reaction with the long-chain hydrocarbon product as the pressure subsides. Experimentally, methane converts to long alkane chains and free hydrogen at 60 GPa and 4509 K (Li, Zhang et al., 2011).

While long-chain hydrocarbons may sequester impact energy for millions of years, icy PdV shock absorbers merely soar to temperatures fantastically higher than the melting point of silicates, with a rebound time, perhaps, measured in seconds. So while shattered target rock may survive umelted, the fantastic temperatures of compressible ices flashed to gases and supercritical fluids may melt sand grains et al. into glassy spherules and larger globules found in the ‘black mat’ layer across North America, suggested to have originated in an icy impact on the Laurentide ice sheet, some 12,900 years ago (suggested here to have formed the Nastapoka arc). Both mechanisms may act to clamp the impact shock-wave pressure below the melting point of rock, greatly reducing or eliminating the quantity of impactite, melt-rock, or suevite in icy-body impacts.

Spiral-in mergers of binary planetesimals (comets and TNOs) and planetesimal collisions may initiate internal aqueous differentiation, melting salt-water oceans in their cores, and the heat released in merger/collisions may largely sublime the more volatile ices, giving vent to the most volatile gasses, such as carbon monoxide, methane, N2, and etc., reducing the abundance of short-chain hydrocarbons available for endothermic shock-wave lengthening. And if prograde-retrograde mergers, lowering the specific angular momentum of merged planetesimals, is the primary mechanism for lowing perihelia into the planetary realm, then a majority of icy-body impacts may have largely given vent to their most volatile components before colliding with Earth.

Other types of impact-shock-wave endothermic reactions that liberate pure oxygen and other highly-reactive chalcogens and halogens would be more susceptible to spontaneous recombination than long-chain hydrocarbon products with their liberated hydrogen gas. By Graham’s law, the effusion (diffusion) rate of hydrogen is 4 times that of oxygen, allowing it to escape rather than re-react, and providing the mobility to scavenge more-highly electronegative halogens and chalcogens from reacting with low-mobility hydrocarbons. In addition to its low-mass high velocity of hydrogen gas, its minute size (particularly of ionized hydrogen ‘protium’) allows it to quite effectively diffuse through solids.

Pennsylvanian coalfields:
Pennsylvanian Subperiod coal fields in North America may have formed in a continental-scale debris flow from dual Carboniferous (binary or fragmentation) icy-body impacts, perhaps forming the circular Michigan (impact) Basin and the tectonically-deformed Illinois (impact) Basin. A super-tsunami debris flow bulldozed the forests before it, forming chevron-shaped (v-shaped to lobe-shaped or parabolic-shaped) mountains of that internally differentiated into a multiplicity of coal-field cyclothems, followed by terrestrial metamorphism of impact hydrocarbons into coal, complete with bulldozed terrestrial flora fossils. Internal differentiation (settling) within each complete cyclothem separated to form an underlying ‘ganister’ or ‘seatearth’, strewn with stigmaria roots, stems and leaves and other material, above which the lower-density impact hydrocarbons floated. Chevron-shaped mountains of mud with low mechanical competency and with layers lubricated by hydrocarbons and phyllosilicate slurries must have slumped again and again and again, increasing the complexity of secondary coal cyclothems.

—————–

TRANS-NEPTUNIAN OBJECT CRUST (TNO-CRUST) METEORWRONGS:

This section describes a common class of low-nickel meteorwrongs, often with metallic-iron inclusions and sometimes with fusion crust, designated trans-Neptunian object crust (TNO-crust) due to their suspected vehicle of transportation to Earth. The material is suggested to have formed from a ‘young debris disk’ created by the spiral-in merger of the former binary brown-dwarf Companion to the Sun at 543 Ma, which ushered in the Phanerozoic Eon.

Hypothesized trans-Neptuian object crust (TNO-crust) meteorwrong

Suggested trans-Neptuian object crust (TNO-crust) meteorwrong

Section view of hyothesized trans-Neptunian object crust (TNO-crust) with metallic-iron inclusions  (Telluric iron, Native iron, Iron meteorite, meteorwrong)

Section view of suggested trans-Neptunian object crust (TNO-crust) with low-nickel metallic-iron inclusions
(Telluric iron, Native iron, Iron meteorite, meteorwrong)

Hypothesized native iron from Doe Run, Pennsylvania, suggested to be from the crust of a Kuiper belt planetesimal

Hypothesized native iron from Doe Run, Pennsylvania, suggested to be from the crust of a Kuiper belt object

Suggested TNO-crust, low-nickel nodular iron fused into a folded sheet, from Conshohocken, PA

Suggested TNO-crust meteorwrong from City Island, Harrisburg, PA
Note from the fractured front side that the bulk material has no voids to correspond to the regmaglypt-like depressions on the the top surface.

Suggested TNO-crust with black fusion crust and fused nodular iron. Note the white limestone inclusions in two pieces
(Native iron, Telluric iron, Meteorwrong, Iron meteorite)

Former Companion to the Sun:
The suggested asymmetrical nature of the spiral-in merger of our former binary brown-dwarf Companion gave it escape velocity from the Sun, but its effects may still be seen in the similar argument of perihelion of extended scattered disk (ESD) objects like Sedna and 2012 VP113, as well as the slight retrograde rotation of Venus. (Prior to the Phanerozoic Eon, Venus is suggested to have had a synchronous orbit around the Sun in which its day equaled its year, but with the loss of the centrifugal force of the Sun around a solar-system barycenter, Venus fell into a slightly lower, shorter-period orbit, such that the length of its day now exceeds the length of its year.)

The brown-dwarf merger debris captured by the Sun apparently formed a young debris disk, with gaps and enhancements in the Kuiper belt determined by Neptune’s outer resonances. Plutinos, Kuiper belt objects (KBOs), and to a lesser extent scattered disc objects (SDOs), assumedly accreted debris-disk coatings whose thickness depended on the local debris-disk density.

Plutinos and cubewanos (cubewanos between Neptune’s 2;3 and 1:2 resonances) on and between Neptune’s strongest outer resonances assumedly received the heaviest accretionary coating from the young, Proterozoic-Phanerozoic-boundary debris disk. (Plutinos and cubewanos themselves are suggested to have condensed in situ by gravitational instability from an earlier and larger ‘old debris disk’ created by the suggested spiral in of our former binary Sun at 4,567 Ma. So they were ideally positioned to accrete a ‘young debris-disk’ coating.) SDOs, by comparison, are suggested to be condensates from the presolar protoplanetary disk scattered outward by the orbit clearing of Uranus and Neptune slightly prior to 4,567 Ma. (Note, this alternative ideology does not hold with planet migration suggested by the Nice Model and Grand Tack.)

Proposed mechanism for the observed melting of TNO-crust:

Radioactive decay of very-short-lived radionuclides from brown-dwarf merger nucleosynthesis is suggested to have caused the observed melting of TNO-crust in early accretionary masses, presumably while in the zero gravity of heliocentric orbit, allowing for the formation of nodular masses of iron within molten basalt without suffering the flattening effects of gravity, not even the moderate surface gravity of TNOs.

Two alternative (rejected) hypotheses for TNO-crust melting:
1) Temperature-mediated volatile depletion of the debris disk dust and ice may have been severe, resulting in a low oxygen fugacity due to its significant depletion in volatile oxygen. The oxygen fugacity was apparently at least as low as iron-wustite (IW) in the accreted debits-disk coating accreted onto trans-Neptunian objects (TNOs) (where Plutinos + KBOs + SDOs = TNOs) to have formed so much metallic iron.
2) A thermite reaction between aluminum spherules and iron oxides could explain the formation of metallic iron in TNO-crust without the necessity of an unduly elevated oxidation state, if aluminum spherules had formed by electrical discharge (lightning) in the brown-dwarf merger itself or subsequently in the debris disk. Then perhaps a local galvanic cell between dissimilar metals (aluminum being one) could have thermally initiated a thermite reaction. TNO-crust melting could have occurred in accretionary masses in the debris-disk itself or subsequently in the debris-disk coating on planetesimal surfaces.

Whatever the cause of TNO-crust melting, it evidently occurred in sufficiently-low gravity to suspend centimeter-scale droplets of metallic iron in basaltic slag. Scaling to the microscopic size of spherules in pig-iron furnaces on Earth, a centimeter scale is untenable even on the surface of a KBO or SDO dwarf planet unless the masses tumbled during hardening, such as might be the case for pillow lava melting into planetesimal ice (see suspected pillow lava images).
………………..

Comparing suggested TNO-crust from the (443 Ma) Appalachian KBO, with its characteristic gneiss and schist, and the (66 Ma) North American Cordillera SDO, with its characteristic supracrustal rock (Mackenzie Mountains) and granite batholiths, reveals a much-higher percentage of metallic iron in the TNO-crust of the Appalachian Mountains. This finding suggests a more volatilely depleted secondary (Cambrian) debris-disk in the warmer, closer Kuiper belt than in the cooler, more-distant scattered disc. So orbital distance from the Sun appears to govern the relative depletion of highly-volatile oxygen which apparently determines the relative concentration of metallic iron in respective TNO-crust accreted onto the surfaces of TNOs.

TNO-crust at Ordovician–Silurian boundary in the Appalachians:
A small percentage of TNO-crust in the Appalachians appears to have received a fusion crust from the suggested Earth impact of the Appalachian KBO around 443 Ma, causing the Ordovician–Silurian extinction event. So TNO-crust is suggested to have been accreting on the KBO surface over top of the icy mantle for 543 – 443 = 100 million years while Cambrian and Ordovician carbonate rock was being precipitated in the core ocean under the icy mantle. Then at impact, the surficial TNO-crust assumedly met up with the core End-Ordovician carbonate rock where it is suggested to be found today, at the boundary between Ordovician (planetesimal) and Silurian (terrestrial) formations.

The Great Unconformity and the Cambrian Explosion:
If the Cambrian Explosion of life was disseminated from the smaller, cooler of the binary brown dwarf precursors, it suggests that at least one of the binary components was a cool, spectral class Y brown dwarf or smaller super-Jupiter component capable of fostering aquatic life, presumably within a circulating layer of liquid or supercritical fluid. The sudden appearance of the highest taxonomic ranks of life in the Cambrian Explosion suggests they were brown dwarf in origin. The explosion also likely represents exploitation of new niches, with variable temperatures, pressures, buoyancies, and chemistries, but uppermost, perhaps, was exploitation of the new niche of sea floors underlying planetesimal, moon and planet oceans, from their assumedly free swimming brown dwarf origins. And the Great Unconformity was assumedly the result of repeated regressions and transgressions of the ocean (super tsunamis) which eroded as much as a billion years’ of Earth’s continental rock record, so brown-dwarf merger debris apparently affected the inner solar system as well.

TNO crust meteorwrongs vs. asteroid meteorites:
Many properties of suggested TNO-crust are at odds with the well-understood properties of rocky-iron asteroids and chondrites from the asteroid belt, and these differences conspire against an extraterrestrial interpretation of TNO-crust, despite sometimes exhibiting fusion crust with flow lines and metallic-iron inclusions that could not have cooled from a molten state on the surface of a high-gravity planet, in industrial slag or naturally.
– Physical characteristics and distribution: Local superabundance of TNO-crust in Early Cambrian and younger formations in the absence of impact craters. TNO-crust frequently exhibits fractal and rounded shapes that cooled in small accretionary masses, compared to larger asteroids that formed by gravitational instability and were only later fractured in subsequent asteroid-asteroid collisions. Metallic-iron inclusions in TNO-crust are most frequently rounded or nodular (from presumably having cooled from a molten state in zero gravity), compared to fractured iron surfaces in iron meteorites, rounded over with atmospheric ablation, or fractured iron shards often seen in brecciated meteorites. TNO-crust exhibits frequent vesicles (voids) due to having cooled from a molten state in small accretionary masses.
– Chemical: Low-nickel and low PGE element abundances in TNO-crust (.2% nickel in metallic-iron inclusions and no iridium down to 2 ppb) are at odds with siderophile-enriched asteroids and chondrites. And high calcium abundance in the basaltic component is more in line with limestone/dolomite-fluxed iron-furnace slag, despite its anomalously-high density and other differences.
– Young age: A suggested finding of an early Cambrian age for TNO-crust would be at odds with early solar system ages for asteroids and chondrites which are many times as old.
– Iron-industry association: TNO-crust is often mixed with iron-furnace slag, due to the hypothesized use of TNO-magnetite as a source of iron ore by the early iron industry.

Siderophile depletion in TNO-crust:
TNO-crust meteorwrongs are depleted in siderophile elements compared to differentiated asteroids and largely undifferentiated chondrites, which immediately dismisses them as probable industrial slag. Siderophile depletion from chondritic abundances, however, may be expected in the spiral-in merger of a binary brown dwarf in which a majority of its siderophile elements had been sequestered in iron cores, similar to planets. In the suggested binary spiral-in merger, core material is hypothesized to have escaped in polar jets, but these were apparently largely confined within the Companion’s Roche sphere, whereas mantle material from the more energetic equatorial explosion attained escape velocity into the Sun’s gravitational control. The polar-jet hypothesis stems from the suggested origin of ‘merger planets’, like Venus and Earth, and ‘spin-off planets’, like Saturn and Jupiter, as described in the section: PLANETS, MOONS, DWARF PLANETS AND PLANETESIMALS. Hypothesized ‘merger planets’ and ‘spin-off planets’ may fragment during gravitational collapse, due to excess angular momentum (briefly forming binary planets), which subsequently spiral-in and merge to form solitary planets. The spiral-in mergers of former binary Earth is hypothesized to have condensed to form enstatite chondrites (which lie on the ‘terrestrial fractionation line’ of oxygen isotopes, attesting to their terrestrial origins) from polar jets. Similarly, CB chondrites are hypothesized to have condensed from the spiral-in merger of former binary-Saturn polar jets. (The large centimeter-sized chondrules in CB chondrites suggest possible accretion distant Centaur orbits between Saturn and Uranus at much-lower orbital velocities than other chondrite types with smaller chondrules melted in low heliocentric orbits.) TNO-crust is depleted in nickel, and the siderophile platinum group elements (Ru, Rh, Pd, Os, Ir, Pt, Hs, Mt, Ds). The mass spec abundance of nickel in a metallic-iron inclusion was measured at .2%, and no iridium was found down to 2 ppb.

INAA and Mass Spec. Analysis of Hypothesized TNO-crust

INAA and Mass Spec. Analysis of Hypothesized TNO-crust

Distribution of TNO-crust:
Meteorite impacts originating from the asteroid belt et al. fall in small quantities at frequent intervals and are thus widely distributed over the Earth’s surface, but due to their visual similarity to Earth rocks, most asteroidal meteorites are found where they stand out a mile by the relative scarcity of Earth rocks, such as in sandy deserts, Midwestern USA farms (where the glacial top soil is 10 feet thick) or on the Antarctic ice sheet. TNO-crust, by comparison, is most likely commonly found in large concentrations near historic iron furnaces or in use as clean fill in roads, paths, parking lots and even railroad ballast. TNO-crust can also be found in and along rivers and streams where it naturally concentrates after eroding out of carbonate rock formations. And since TNO-crust (the black swan of meteorites) is suggested to arrive in exceedingly-infrequent intervals as the frosting on top of assumedly-terrestrial rock, it won’t be found on the Antarctic ice sheet, which to scientists is damning negative evidence against it. So asteroidal meteorites are found in abundance on the Antarctic ice sheet and almost never in streams and rivers, whereas slag-like TNO-crust is the exact reverse: no wonder the scientists are so sure of themselves.

Physical characteristics of TNO-crust:
The typical shape and appearance of hypothesized TNO-crust is markedly dissimilar to ablated meteorites of asteroid origin, although TNO-crust occasionally exhibits ablative fusion crust and some fusion crust has flow lines. A distinct minority of TNO-crust has one relatively-smooth rounded surface with the other surfaces fractured, suggestive of fractured sections of pillow lava containing with metallic-iron inclusions, although the rocks are suggested to have cooled in zero-gravity orbit rather than underwater. While massive TNO-crust in Southeast Pennsylvania may reach 1 meter diameter boulders of basaltic rock and metallic iron, a majority of the material appears to be granular on a millimeter to centimeter scale. Metallic-iron masses seem to defy generalization in the great variety of their shapes and wide ranging sizes. And massive TNO-crust often exhibits vesicular steam voids characteristic of terrestrial vesicular basalt or industrial iron-furnace slag, although iron furnace slag doesn’t have rounded or irregularly-rounded molten surfaces like TNO-crust that cooled in orbit.

Suggested TNO-crust fused nodular metallic-iron from Conshohocken, PA, assumedly mined from Ivy Rock quarry
(Native iron, Telluric iron, Meteorwrong, Iron meteorite)

Suggested TNO-crust (unfused) metallic-iron, strongly attracted to a magnet.
(Native iron, Telluric iron, Meteorwrong, Iron meteorite)

Black fusion crust on suggested TNO-crust
(Meteorwrong, meteorite)

Shiny-black fusion crust on suggested TNO-crust
(Meteorwrong, meteorite)

Fusion-crust with flow lines on suggested TNO-crust
(Meteorwrong, meteorite)

Fusion-crust with flow lines on suggested TNO-crust. Note the embedded spherules.<br / (Meteorwrong, meteorite)

Fractured chunks of suggested TNO-crust that likely cooled from a molten state in zero-gravity of the Kuiper belt, with melting due to radioactive decay of very-short-lived radionuclides from the spiral-in merger nucleosynthesis of the former binary brown-dwarf Companion to the Sun. Unfractured masses may be similar in shape and size to pillow lava on Earth; however, these rocks contain metallic-iron inclusions.

Fractured chunk of pillow-lava-like TNO-crust that cooled from a molten state in zero-gravity of the Kuiper belt, with melting due to radioactive decay of very-short-lived radionuclides from the spiral-in merger nucleosynthesis of the former binary brown-dwarf Companion to the Sun. Note the magnet attached to a metallic-iron inclusion.
(Telluric iron, Native iron, Meteorite, Meteorwrong)

Suggested TNO-crust finds:

Camp Creek district, Silver Bow County, Montana, USA
– coloradoprospector.com
location withheld
a photo gallery of MeteorWrongs
location withheld
– a photo gallery of MeteorWrongs
location withheld
a photo gallery of MeteorWrongs
 location withheld
a photo gallery of MeteorWrongs
l
ocation withheld
– Greg Baumgartner (Knights Templar)
Northeast of Los Angeles, exact location withheld
Greg Baumgartner (Knights Templar)
Northeast of Los Angeles, exact location withheld
Greg Baumgartner (Knights Templar)
Northeast of Los Angeles, exact location withheld
Germany
-
 Utah

Coordinates of find locations (most clean fill locations) in Southeastern PA:

Plymouth, PA
40.080893, -75.312770

Phoenixville, PA
40.134763, -75.513609

3595 Doe Run Church Rd
Coatesville, PA 19320
39.929497, -75.809780

2101-2199 Sycamore St
Harrisburg, PA 17111
40.254694, -76.850742

Formerly-molten magnetite:
The top surface of hypothesized TNO-magnetite often retains the raised profile of its formerly-molten state where it has very apparently flowed and hardened in place (see image), completely unlike the appearance of roasted iron ore which is heated to burn off contaminants in preparation for smelting in an industrial pig-iron furnace. The flattening apparent in formerly-molten TNO-magnetite flows is suggestive of flow in the presence of gravity, whereas nodular iron masses in TNO-crust are frequently less flattened (suggestive of zero gravity), but whether the gravity responsible for flattened TNO-magnetite flow would be moderate dwarf-planet gravity or high Earth gravity is unknown. The small chunk size of TNO-magnetite (typically a kilogram or less) mixed in with far-larger chunks and volumes of TNO-metallic-iron and basaltic TNO-crust in the the vicinity of iron furnaces suggest of their relative value, perhaps with TNO-crust melted in smaller secondary furnaces for boutique wrought iron applications, where the importance of corrosion resistance supersedes toughness requirements. Frequent intermingling of TNO-crust with iron-furnace slag in Conshohocken, Phoenixville and Harrisburg show a broad connection with the iron industry, but no description stands out in a desultory perusal of the history of iron manufacturing and iron ore mining in Pennsylvania that’s suggestive of TNO-crust or TNO-magnetite. So small-batch specialty applications in the iron industry are suggested to be the likeliest former use of TNO-magnetite.

Magnetite suggested to have melted and flowed from spontaneous oxidation reactions within a local superabundance of TNO-crust on Earth. Note the effect of gravitational flattening of the molten magnetite on high-gravity Earth.
(Meteorite, meteorwrong)

Note the layering of molten magnetite suggested to have melted and flowed from spontaneous oxidation reactions within a local superabundance of TNO-crust on Earth. Note the effect of gravitational flattening of the molten magnetite on high-gravity Earth.
(Meteorite, meteorwrong)

Secondary limonite:
Ferric and ferrous cations are suggested to run off from TNO-crust superabundance which may concentrate to precipitate secondary limonite concretions more suitable for smelting (containing less embrittling contaminants) in iron furnaces than the originating TNO-crust and TNO-magnetite.

Limonite concretions, Conshocken, PA
40.077521, -75.276305

Limonite concretions, Conshocken, PA
40.077521, -75.276305

Accretion vs. gravitational instability:
Planetesimals are suggested here to form by gravitational instability (GI) rather than core/pebble accretion, although super-Earths are suggested to form by ‘hybrid accretion’ (Thayne Curie 2005) from core accretion of planetesimals formed by GI (hence hybrid). In the inner solar system, chondrules are suggested to be the scale of core accretion; however, the outer solar system may experience still larger accretionary masses, but not of the 1 km scale size necessary to gravitationally survive collisions of similar-sized boulders. That is, when two 1 km planetesimals collide they tend to stick together, whereas when to smaller planetesimals collide they tend to fracture into smaller objects. The 25 m “Cheops” boulder on Comet 67P/Churyumov-Gerasimenko discovered by the Rosetta mission may give an indication of the size of accretionary masses in the outer solar system, so on that thin evidence, perhaps Ivy Rock quarry and the Harrisburg/Swatara-Township quarries are the locations of similar-sized accretionary masses which were swept up by the 443 Ma Appalachian KBO in the Kuiper belt.

Ivy Rock quarry, Conshohocken, PA and points west:
Ivy Rock quarry, just north of Conshohocken, PA, along Conshohocken Road on the east bank of the Schuylkill River (40.095, -75.315) may be the origin of a local superabundance of TNO-crust, which was mined and used to level a small triangle of land between Plymouth Creek and I-476 (Veterans’ Memorial Highway), just 1.6 km south of the quarry. (Access from Light Street, Conshohocken.) This local superabundance of TNO-crust is suggested to have at one time been a circa 25 m diameter accretionary mass in the Kuiper belt, which is suggested to have collided with the vastly-larger Appalachian dwarf planet while both were still in the outer solar system. Then the accreted, surficial TNO-crust was ferried to Earth on the Appalachian dwarf planet, whose impact with Earth is suggested to have brought the Ordovician Period to a close in the Ordovician-Silurian extinction event which contributed the aqueously-differentiated planetesimal land mass of the Appalachian region. TNO-crust can be found in the Conestoga Formation (valley) between Conshohocken and Coatesville (and no doubt points further west). In Phoenixville, PA, huge quantities of TNO-crust and iron-furnace slag has been pushed into French Creek ravine from the south bank, between N. Main St. and Ashland St., just east of Phoenixville Foundry. (Phoenixville appears to have the best fusion crust in the area.) TNO-crust and elongated flat lengths of native iron can be found in Doe Run, PA along roads and streams and pitched to fence posts of farmer’s fields.

Ivy Rock quarry, Conshohocken, PA:  TNO-crust accretionary masses may reach circa 25 m Dia in the Kuiper belt which are suggested to have been swept up by the Appalachian Kuiper belt object (KBO) which impacted Earth 443 Ma and contributed the aqueously-differentiated planetesimal land mass of the Appalachian region, causing the Ordovician-Silurian extinction event.  A circa 25 m Dia TNO-crust accretionary mass is suggested to have been excavated out of Ivy Rock quarry (now Ivy Rock Clean Landfill) near 1100 Conshohocken, Rd. in Conshohocken, PA.  The circled areas devoid of plant life may be due to the plant killing properties of granular TNO-crust.

Ivy Rock quarry, Conshohocken, PA:TNO-crust accretionary masses may reach circa 25 m Dia in the Kuiper belt which are suggested to have been swept up by the Appalachian Kuiper belt object (KBO) which impacted Earth 443 Ma and contributed the aqueously-differentiated planetesimal land mass of the Appalachian region, causing the Ordovician-Silurian extinction event. A circa 25 m Dia TNO-crust accretionary mass is suggested to have been excavated out of Ivy Rock quarry (now Ivy Rock Clean Landfill) near 1100 Conshohocken, Rd. in Conshohocken, PA. The circled areas devoid of plant life may be due to the plant killing properties of granular TNO-crust. 

Author, standing in front of a hill of suggested granular trans-Neptunian object crust (TNO-crust) in Conshohocken, PA between I-476 and Plymouth Creek, 1.6 km south of Ivy Rock quarry, which is suggested to be the location from which the Conshohocken TNO-crust superabundance was mined. Note, granular TNO-crust is an effective herbicide.

Harrisburg, PA quarry:
Much of the TNO-crust used as clean fill in the Harrisburg, PA area may have been excavated from the former quarry in the 2200 block of Paxton St. Harrisburg/Swatara-Township, PA 17111 (40.256178, -76.846737). TNO-crust has been used as clean fill at various locations throughout the Harrisburg Area which is easily identified by its attraction to a magnet and also, frequently but not always, by a rough cement-like texture. Chunks can be found intermittently scattered along the southwest bank of City Island in the Susquehanna River, with island access from Market Street Bridge. TNO-crust has also been used as clean fill on the East Shore of the Susquehanna River to extend residential parking on the river side of Front St. in Enola, PA. TNO-crust has been found as far west as Wesley Dr. in Mechanicsburg, PA, suggesting local superabundance on the West Shore.

Swatara Township quarry, Harrisburg, PA Area:  TNO-crust accretionary masses may reach circa 25 m Dia in the Kuiper belt which are suggested to have been swept up by the Appalachian Kuiper belt object (KBO) which impacted Earth 443 Ma and contributed the aqueously-differentiated planetesimal land mass of the Appalachian region, causing the Ordovician-Silurian extinction event.  A circa 25 m Dia TNO-crust accretionary mass is suggested to have been excavated out of the quarry at 2200 Paxton St., Harrisburg/Swatara-Township, PA 17111 PA.  The circled areas devoid of plant life may be due to the plant killing properties of granular TNO-crust.

Swatara Township quarry, Harrisburg, PA Area:TNO-crust accretionary masses may reach circa 25 m Dia in the Kuiper belt which are suggested to have been swept up by the Appalachian Kuiper belt object (KBO) which impacted Earth 443 Ma and contributed the aqueously-differentiated planetesimal land mass of the Appalachian region, causing the Ordovician-Silurian extinction event. A circa 25 m Dia TNO-crust accretionary mass is suggested to have been excavated out of the quarry at 2200 Paxton St., Harrisburg/Swatara-Township, PA 17111 PA. The circled areas devoid of plant life may be due to the plant killing properties of granular TNO-crust. 

Iron-furnace Slag:
Microscopic examination of iron-furnace slag from historic Cornwall and Johanna furnaces reveals nothing larger than micron-scale metallic-iron spherules which require magnification. The microscopic spherules are most apparent in thin chips of translucent, glassy slag with strong back lighting at 100X magnification. The spherules come into focus and disappear as one varies the depth of focus, revealing hundreds of spherules per cubic centimeter with a distinctive upper size limit dictated by the high negative buoyancy of metallic iron in molten glassy slag on the surface of our high-gravity planet. By comparison, massive TNO-crust frequently contains millimeter to centimeter-sized metallic-iron blebs which are many orders of magnitude larger than the microscopic spherules of iron-furnace slag.

.

Iron Spherules (100X) in Iron-Furnace Slag from Joanna Furnace (1791-1898) Geigertown, PA

Iron Spherules (100X) in Iron-Furnace Slag from Joanna Furnace (1791-1898) Geigertown, PA

Economically, the significant percentage of metallic iron in TNO-crust precludes an industrial origin, even setting aside the impossibility of basaltic slag suspending centimeter-scale masses of metallic-iron in basaltic slag on the surface of a high-gravity planet. Iron-furnace fuel was even dearer in the early years before charcoal was replaced by coke. A batch of iron-furnace charcoal required twenty-five to fifty cords of split hardwood, quickly denuded local woods, and these roasting hardwood batches had to be tended around the clock for 10 to 14 days by colliers in large charcoal pits, making charcoal production for iron furnaces an industry unto itself. Additionally, the curved surfaces of hypothesized pillow-lava and the fractal shaped masses of metallic iron across many orders of magnitudes of size are strongly indicative of a natural origin in (near) zero gravity, particularly considering that manufacturing strives for uniformity.

45 kg mass of native iron in a fractal ‘ring of flames’ shape, suggested to be trans-Neptunian object crust (TNO-crust).
(Telluric iron, Native iron, Iron meteorite, meteorwrong)

65 kg mass of native iron with a ‘mushroomed’ forged surface (mushroomed surface facing the bottom of the photo), of suggested trans-Neptunian object crust (TNO-crust).
(Telluric iron, Native iron, Iron meteorite, meteorwrong)

TNO-crust silicides:
Silicides, Fe3Si, Cr3Si, Mn3Si et al., are suggested to be somewhat-common constituents of TNO-crust; however, their apparent absence in the largest local superabundance (Ivy Rock quarry and Harrisburg/Swatara-Township quarry) suggest that they may undergo spontaneous chemical reactions with oxygen on Earth, perhaps to form TNO-magnetite with its gravity-flattened flow profile. The physics and chemistry which combine metal and silicon vapor together to form brilliantly-shiny silicides in one instance and jet-black basaltic magma in another would be interesting to know, perhaps the condensation of common mantle minerals perovskite, CaTiO3, and silicate perovskite (Bridgmanite), (Mg,Fe)SiO3, result in high-purity silicides.

Assumed TNO-crust silicide (magnetic), although not analysed as such.  Found in Bristol, PA near the Delaware River

Assumed TNO-crust silicide (magnetic), although not analysed as such. Found in Bristol, PA near the Delaware River

Assumed TNO-crust silicide (very-slightly magnetic), but not analysed as such.  Found in Conshohocken along the Schuylkill River Trail.

Assumed TNO-crust silicide (very-slightly magnetic), but not analysed as such. Found in Conshohocken along the Schuylkill River Trail.

——————


BOULDER FIELDS:

This section discusses a characteristic class of isolated boulder fields with uniformly weathered surfaces that often exhibit deep pits and striations not found in boulders outside their narrow confines. This section makes an argument for their catastrophic origin in seconds to minutes from secondary strikes of ice sloughed off from icy-body objects like comets or larger trans-Neptunian objects (TNOs), rather than the relative gradualism of an exaggerated freeze and thaw cycle toward the end of the last glacial period as suggested by most academic sources.

Hickory Run boulder field, Pennsylvania  Boulder field hypothesized to have formed by a secondary impact of icy crustal material sloughed off from the icy body that formed the Nastapoka arc, of lower Hudson Bay, some 12,900 years ago.  Following the secondary impact, a downhill debris flow concentrated the boulders into the present boulder field.

Hickory Run boulder field, PennsylvaniaBoulder field hypothesized to have formed by a secondary impact of icy crustal material sloughed off from the icy body that formed the Nastapoka arc, of lower Hudson Bay, some 12,900 years ago. Following the secondary impact, a downhill debris flow concentrated the boulders into the present boulder field.

Boulder fields of impact origin would tend to be randomly located within a possibly-vast strewn field and therefore generally unassociated with scree and talus slopes below steep cliff faces where boulder fields are well known to form. The suggested randomness of impact fields, however, appear to be highly skewed to the rugged terrain of mountains, hills and slopes which would seem to obviate the random argument. True, mountains may provide significant obstacles for objects in exceedingly-oblique approach angles to Earth that may be nearly parallel to the limb of the planet, but other reasons are hypothesized to predominate. Slopes, relatively unprotected from impacts by thin soils, provide potential energy to concentrate boulders into downhill boulder fields by catastrophic debris flows in the seconds and minutes following impact. Additionally, we may be largely unaware of the effect of secondary impact sites on level ground, partly due to the original protection afforded to the bedrock by thicker lowland soil, but mostly due to their lack of concentration on level ground and due to their subsequent burial by thick lowland sediments. Finally, small boulder fields on low ground may have been largely scavenged for use as building stone, particularly for stone fences, in the early colonial years.

So secondary-impact breccia may form rapid downhill debris flows from a strike higher up on sloped terrain, and a debris flow into a shallow v-shaped gully may serve to concentrate boulders many stories deep. And deeply stacked boulder fields on sloping terrain will make effective French drains to clear the original debris flow sediments and keep it clear of future sedimentation: the relative absence of plant life is a notable characteristic of hypothesized impact boulder fields. Eastern Pennsylvania alone boasts two Ringing Rocks boulder fields, two Blue Rocks boulder fields (near Hawk Mountain, Berks County Park) and Hickory Run boulder field (Hickory Run State Park), as well as numerous smaller boulder unnamed boulder fields scattered throughout the ridge-and-valley terrain of the Appalachians.

Boulder fracturing mechanisms:
In addition to ‘impulse fracturing’, deep surface striations scoured into bedrock by entrained masses of super-high velocity slurries may provide leverage for super-high-pressure shock wave to split rock by tension. And high-pressure high-temperature phyllosilicate slurries are hypothesized to have rock-fracturing properties which may also contribute to bedrock fragmentation. (See section: PHYLLOSILICATE PROPERTIES).

Boulder cup marks from cairn of Great Britain:
Pitting and striations common in boulder fields of Southeastern Pennsylvania are also known on boulders in burial Clava cairns and other stone monument structures in Great Britain. In more-highly populated regions of the Old World, impact boulder fields may have been heavily scavenged for use as building stone, except where sacred monuments preserved them in part. Coincidentally, cairns are often found in uplands, moorland or moors (a type of habitat found in upland areas) and on mountaintops where impact boulder fields tend to form. In Great Britain, pitting associated with cairn boulders are known as ‘cup marks’, with concentric ‘ring marks’, likely added by hand for emphasis.  Imagine the prehistoric world of 12,900 years ago with a dwarf planet bearing down on the planet. Intermittent meteoric flashes brighter than the Sun accompanied by a thunderous roar that broke eardrums and collapsed lungs were accompanied by a rain of icy material at interplanetary speed in sufficient density to reduce northern populations to a remnant of their former numbers. All this was visited on primitive people before the advent of agriculture in Great Britain by angry gods apparently intent on world destruction. The sudden appearance of boulder fields were accompanied by special boulders containing sacred writing from angry gods. And so the creation of boulder monuments marking upland boulder fields from the gods, with their sacred texts prominently displayed, is just what one might expect from primitive peoples with modern language development.

Cup marks in a passage-type clava cairn at Balnauran of Clava near Inverness, Scotland. Hypothesized to be from an impact boulder field caused by a small secondary strike of icy crust material  sloughed off from a trans-Neptunian object (TNO) impact that may have formed the Nastapoka arc basin of lower Hudson Bay, some 12,900 years ago

Cup marks in a passage-type clava cairn at Balnauran of Clava near Inverness, Scotland.Hypothesized to be from an impact boulder field caused by a small secondary strike of icy crust material sloughed off from a trans-Neptunian object (TNO) impact that may have formed the Nastapoka arc basin of lower Hudson Bay, some 12,900 years ago

The academic geology explanation of boulder fields formed by exaggerated freezing and thawing cycles during the end of the last glacial period does not explain their segregation into narrow boulder fields. Take another example from nature which actually happened to me: imagine you’re driving through the countryside and notice that lots of trees have been knocked down in the woods on both sides of the highway, which have been ground into mounds of wood chips. You might justifiably think that a tornado had recently passed through, but as you continue to drive, you slowly become aware that the damage has gone on for 10s of miles uninterrupted, and you’d do well to alter your opinion to that of an ice storm, which tends to affect vastly-larger areas than tornadoes. In a reverse analogy, when you think of freezing and thawing cycles during the end the ice age you imagine vast swaths of the North American continent beyond the ice sheet, not very-few highly-defined boulder fields with astonishing local concentrations of boulders.

Finally, several characteristic boulder fields exhibit the unusual property that some individual boulders ring like a bell when sharply struck with a hard object such as another rock or a hammer. Two diabase boulder fields in Southeastern Pennsylvania independently go by the name ‘Ringing Rocks’.

Perhaps all of the relatively-recent impact boulder fields were caused by a single event which ended the Pleistocene, some 11,700 + 1,400 – 0.0 years ago, causing the local extinction of 33 megafaunal genera on the North American continent as well as ending the Clovis culture. But rather a than moderate-sized comet airburst over the Laurentide ice sheet, as suggested by proponents of the YD impact hypothesis, a vastly-larger TNO impact may have formed the 430 km Nastapoka Arc basin of lower Hudson Bay. Icy-body impacts are hypothesized to form basins rather than craters when relatively compressible ices clamp the impact shock-wave pressure below the melting point of target-rock silicates and the formation of shatter cones, masking their impact origins. (See section: ABIOTIC OIL AND COAL)

This hypothesized, end-Pleistocene impact event was apparently accompanied by
legions of secondary impacts suggested to be composed of sloughed off icy crust, apparently from an exceedingly oblique approach through the Earth’s atmosphere that almost missed the Earth altogether. The apparently astronomical quantity of secondary strikes should be suggestive of a non-fortuitous causal mechanism, rather than mere secondary ad hoc mechanisms, such as a collision with another planetesimal or a fortuitous close encounter with one of the giant planets.

Impact boulder-field characteristics:
Pockmarks and striations on boulders in several isolated boulder fields across Pennsylvania are suggestive of high energy processes. Two discrete diabase boulder fields in Southeastern Pennsylvania, separated by more than 50 kilometers, have several distinctive properties in common that they do not share with loose diabase boulders in between. Ringing Rocks Park in Lower Black Eddy, PA and Ringing Rocks Park in Lower Pottsgrove Township, PA share several distinctive properties:
1) a deep field of boulders, many stories high which make a French drain and prevent soil accumulation, precluding most plant life,
2) relatively-recently fractured boulders with a similar degree of weathering on all surfaces indicative of a simultaneous catastrophic origin,
3) similar surface features on some boulders, such as pockmarks, pot holes and striations indicative of a catastrophic origin since the limited degree of surface weathering precludes their formation by erosion,
4) some boulders ring like bells when sharply struck with a hard object as if the rocks had acquired a surface tension rind during the hypothesized, catastrophic, super-high pressure shock wave,
5) Subconchoidal fracturing of monolithic diabase also points to the tremendous force and energy of a catastrophic origin.

Ringing Rocks boulder field, Pennsylvania  Striations in diabase boulder, hyopothesized to have formed from super-high-velocity fluids from small secondary strikes of icy crust sloughed off of comets or larger TNOs

Ringing Rocks boulder field, PennsylvaniaStriations in diabase boulder, hyopothesized to have formed from super-high-velocity fluids from small secondary strikes of icy crust sloughed off of comets or larger TNOs

Ringing Rocks boulder field, Pennsylvania  More striations on diabase boulder

Ringing Rocks boulder field, PennsylvaniaMore striations on diabase boulder

Ringing Rocks boulder field, Pennsylvania  Potholes in diabase boulder, hyopothesized to have formed from super-high-velocity fluids from small secondary strikes of icy crust sloughed off of comets or larger TNOs

Ringing Rocks boulder field, PennsylvaniaPotholes in diabase boulder, hyopothesized to have formed from super-high-velocity fluids from small secondary strikes of icy crust sloughed off of comets or larger TNOs

Ringing Rocks boulder field, Pennsylvania  Impact boulder field pock marks (pits/cup-marks)

Ringing Rocks boulder field, PennsylvaniaImpact boulder field pock marks (pits/cup-marks)

Other Southeastern Pennsylvania boulder fields in sandstone and quartzite, such as Hickory Run State Park boulder field and Blue Rocks campground boulder field on Hawk Mountain exhibit the first 3 of the 5 (above) properties exhibited by diabase boulder fields, but lack the ringing quality of diabase rocks. Sedimentary rocks tend to be more brittle and perhaps less erosion resistant than diabase and thus can not be as finely sculpted to begin with, and the features tend to erode faster afterward. Sedimentary rocks also tends to split along bedding planes, which eliminate the subconchoidal fracturing property of diabase boulder fields which point to catastrophic origins. And in particular, Blue Rocks quartzite boulders appear to be particularly susceptible to bioerosion by lichen.

Hickory Run boulder field, Pennsylvania  Impact boulder-field scouring by super-high-velocity material hypothesized to have sloughed off of a trans-Neptunian object (TNO)

Hickory Run boulder field, PennsylvaniaImpact boulder-field scouring by super-high-velocity material hypothesized to have sloughed off of a trans-Neptunian object (TNO)

Hickory Run boulder field, Pennsylvania  Hypothesized scouring by super-high-velocity trans-Neptunian object (TNO) fluids

Hickory Run boulder field, PennsylvaniaHypothesized scouring by super-high-velocity trans-Neptunian object (TNO) fluids

Hickory Run boulder field, Pennsylvania  More hypothesized scouring by super-high-velocity trans-Neptunian object (TNO) fluids

Hickory Run boulder field, PennsylvaniaMore hypothesized scouring by super-high-velocity trans-Neptunian object (TNO) fluids

Extinction events separating geologic periods and shorter intervals are often correlated with unconformities and bright-line sedimentary layers, both of which may be attributable to impact events. The YD extinction event has its own bright-line layer known as the ‘black mat’.
“The layer contains unusual materials (nanodiamonds, metallic microspherules, carbon spherules, magnetic spherules, iridium, charcoal, soot, and fullerenes enriched in helium-3) interpreted as evidence of an impact event, at the very bottom of the ‘black mat’ of organic material that marks the beginning of the Younger Dryas.”
(Wikipedia: Younger Dryas impact hypothesis)
—————

PANSPERMIA AND FOSSILS IN DWARF-PLANET ROCK:

But what about macroscopic fossils in hypothesized comet rock?

Perhaps the question should be reversed to ask why multicellular life forms shouldn’t evolve first in the oceans of trillions of Oort Cloud planetesimal oceans, perhaps a 100 million years or more before earth cooled sufficiently to even support liquid water. Even today, Jupiter’s icy moon Europa alone is thought to harbor a liquid ocean containing twice the volume of water of all earth’s oceans.

If the solar system barycenter promotes mergers of close-binary planetesimals and also (compound) mergers of solitary planetesimals, then shattering of planetesimal ice occurring in planetesimal mergers may efficiently share genetic information, including eggs of higher life forms, widely throughout the Oort cloud and galaxy. If peanut-shaped Oort cloud comets are ‘contact binaries’ formed from the (core-collapse) merger of close-binary pairs precipitated by gravitational collapse — as similar-sized Kuiper belt binaries are hypothesized to have formed (Nesvorny, Youdin and Richardson, 2010, Formation of Kuiper Belt Binaries by Gravitational Collapse ) — then perhaps the vast majority of Oort cloud planetesimals have merged and shattered, effectively sharing material among themselves.

Additionally, the 3 light-year diameter of the Oort cloud, particularly including the high surface area of shrapnel from planetesimal mergers, has swept out a considerable volume of the galaxy over its 18 galactic revolutions, or so, in 4-1/2 billion years, and the continual merger of close-binary pairs over the history of the solar system has likely maintained a considerable volume of liquid water for aqueous evolution, not merely static sharing. Then catastrophic, terrestrial comet impacts have similarly contaminated the earth at widely-spaced intervals, but since rock layers in differentiated planetesimal cores are laid down continuously, the intervals between impacts are masked.

If the Appalachian Basin Platform is a compound-planetesimal impact that brought on the Ordovician–Silurian (End Ordovician or O-S) extinction event, then the trilobites, brachiopods, gastropods, mollusks, echinoderms and etc. found in Ordovician limestone are of Oort cloud origin. And the planet matter found in late Silurian and younger deposits is terrestrial; however the (authigenic terrestrial?) mudstone of the Burgess ‘Shale’ Formation in the Canadian North American Cordillera may be terrestrial.

If photosynthetic plant life is a terrestrial adaption, then the slow emergence of flora in the Devonian compared to the earlier Cambrian Explosion of aquatic fauna may represent the explosive growth of multicellular life promoted in Oort cloud planetesimal oceans, likely accelerated by short-lived radionuclides from the luminous red nova (LRN) merger of Proxima’s, (the hypothesized companion star to the Sun, Proxima [Centauri]) close-binary pair.

At cold temperatures and low oxygen levels in comet oceans oxygen transport and exchange by hemocyanin and hemerythrin would be more efficient by hemoglobin, so hemoglobin may be a terrestrial adaption to higher oxygen levels facilitated by photosynthesis.

While the conodont might represent the height of chordata life forms in Oort cloud oceans, the cephalopod-mollusk octopus might represent the height of Oort cloud intelligence, and we may need go no further than Europa’s ocean to find higher life forms. And as in the deep hydrosphere on earth, aqueous planetesimal life forms may see and communicate with the light of bioluminescence.

Type II planetesimals are hypothesized to have formed from chemically-reduced dust and ice that condensed from super-intense solar wind during the common envelope phase of the central binary pair as they spiraled inward. High temperatures in chemically-reactive Type II planetesimal oceans may support only microbial life forms, perhaps mostly in the cool ranges near the ice water boundary. By comparison, primary and compound Type I planetesimals formed from more-highly-oxidized presolar dust and ice of the protoplanetary accretion disk may be the origin of multicellular Oort cloud life forms.

In a compromise between strictly terrestrial evolution and continuous panspermia, terrestrial evolution might be vastly accelerated by the catastrophic introduction of microorganisms containing alien DNA for higher traits from Oort cloud comets.

Interstellar infection of DNA sequences for higher traits might explain evolutionary spurts of new taxonomic ranks following extinction events caused by Oort cloud comet impacts, particularly if alien microorganisms tend to quickly succumb to native strains and thus have only a short time to infect higher organisms by genetic transformation, incorporating exogenous DNA into gametes prior to fertilization. Indeed, human DNA has been found inside gonorrhoeae bacteria.

In molecular biology transformation is genetic alteration of a cell resulting from the direct uptake, incorporation and expression of exogenous genetic material (exogenous DNA) from its surroundings and taken up through the cell membrane(s).
. . .
Transformation may also be used to describe the insertion of new genetic material into nonbacterial cells.

(Wikipedia: Transformation)

In their 2013 paper, “Life Before Earth”, Sharov and Gordon suggest that genetic complexity is a measure of the length of functional and non-redundant DNA sequence. They continue:

If we plot genome complexity of major phylogenetic lineages on a logarithmic scale against the time of origin, the points appear to fit well to a straight line (Sharov, 2006) (Fig. 1). This indicates that genome complexity increased exponentially and doubled about every 376 million years. Such a relationship reminds us of the exponential increase of computer complexity known as a “Moore’s law” (Moore, 1965; Lundstrom, 2003). But the doubling time in the evolution of computers (18 months) is much shorter than that in the evolution of life.

What is most interesting in this relationship is that it can be extrapolated back to the origin of life. Genome complexity reaches zero, which corresponds to just one base pair, at time ca. 9.7 billion years ago (Fig. 1). A sensitivity analysis gives a range for the extrapolation of ±2.5 billion years (Sharov, 2006). Because the age of Earth is only 4.5 billion years, life could not have originated on Earth even in the most favorable scenario (Fig. 2). Another complexity measure yielded an estimate for the origin of life date about 5 to 6 billion years ago, which is similarly not compatible with the origin of life on Earth (Jørgensen, 2007).

(Sharov and Gordon, 2013)

By this measure suggested by Sharov and Gordon, intelligent life is only beginning to emerge in our Galaxy. Then extrapolating beyond their paper, intelligent life likely takes the form of humanoids if genetic sharing by transformation has allowed life on Earth to keep pace with the Galactic genetic doubling rate of 376 million years. Genetic sharing would also seem to indicate that the highest (non mammal) aquatic intelligence, in the form of octopuses, may lag behind terrestrial intelligence by less than one doubling even though aquatic life is likely vastly more prevalent.
——————–

SPECIFIC KINETIC ENERGY OF LONG-PERIOD IMPACTS:

The orbital velocity of the earth makes a dramatic difference in the kinetic energy of comet impacts. For a comet falling from infinity toward the sun at earth’s orbit, the ratio of kinetic energy between comets hitting earth head-on in its orbit around the sun and those catching up with earth is a factor of 19, but most fall somewhere in between. (This calculation factors in earth’s gravity.)

Earth escape velocity: 11.2 km/s
Earth, orbital velocity: 29.8 km/s
Body falling from infinity towards the sun to a distance of 1 AU: 42.2 km/s (calculated from gravitational potential energy and checked by comparing velocity falling from infinity to the diameter of the sun with the escape velocity of the sun)

Running into the earth head on in its orbit:
42.2 km/s + 29.78 km/s = 71.98 km/s
71.98 * 71.98 + 11.19 * 11.19 = 5181.12 + 125.21 = 5306.33 km^2/s^2 (specific energy)

Catching up with earth in its orbit:
42.2 km/s – 29.78 km/s = 12.42 km/s
12.42 * 12.42 + 11.19 * 11.19 = 154.26 + 125.21 = 279.47 km^2/s^2 (specific energy)

Specific kinetic energy ratio between hitting the earth head-on and catching up with earth in its orbit:
5306.33 / 279.47 = 18.99

Dwarf comets having fallen through Proxima’s 3:1 ‘resonant nursery’ resonance will orbit CCW in the Oort cloud like the planets. If the solar-system barycenter (SS-barycenter) acts as an aphelia attractor that pins Oort cloud orbits in its vicinity to the SS-barycenter, then the 73.6 Myr orbit of the Sun around the SS-barycenter will align these pinned orbits with the Galactic core twice per orbit, causing the tidal effect of the Galactic core to gradually reduce their perihelia by extracting angular momentum from the orbits until they dip into the planetary realm of the inner solar system. And the dwarf planets most likely to collide with Earth will have perihelia on the order of 1 AU. These objects would catch up with Earth in its CCW orbit and impact at almost the lowest possible speed.

Finally, comet ice may undergo endothermic chemical reactions (ECRs) in comet impacts, mostly clamping the impact shock-wave pressure below the melting point of rock.
————


DARK MATTER:

Subtitle: Phase-change condensation of galaxies, cold dark-matter (Bok) globules, and stars

Carina Nebula  Giant molecular clouds are the suggested luminous cousins to dark 'globule clusters' composed of invisible (Bok) globules with their luminous stellar metallicity 'snowed out' into icy chondrules.  But overexposure to giant stars in the galactic plane can sublime stellar metallicity from icy chondrules, converting dark globules to their 'excited state' with stellar metallicity in gaseous phase whence then become our familiar opaque Bok globules.  And gaseous stellar metallicity promotes Jeans instability in Bok globules which may cause the entire gravitationally-bound globule to to 'go nuclear' and convert to a gravitationally-bound star cluster.

Carina NebulaGiant molecular clouds are the suggested luminous cousins to dark ‘globule clusters’ composed of invisible (Bok) globules with their luminous stellar metallicity ‘snowed out’ into icy chondrules. But overexposure to giant stars in the galactic plane can sublime stellar metallicity from icy chondrules, converting dark globules to their ‘excited state’ with stellar metallicity in gaseous phase whence then become our familiar opaque Bok globules. And gaseous stellar metallicity promotes Jeans instability in Bok globules which may cause the entire gravitationally-bound globule to to ‘go nuclear’ and convert to a gravitationally-bound star cluster. 

Baryonic dark matter assertions:

I.   The two states of primordial dark-matter Bok globules:

A.   Normal state: Acquired stellar metallicity has ‘snowed out’ into a solid phase of icy chondrules, sequestering it from detection and leaving behind only gaseous H2 & He which doesn’t absorb below UV frequencies, rendering globules dark in their normal state.
B.   Excited state: Close encounters by giant stars sublime the most-volatile stellar luminosity from icy chondrules, rendering excited Bok globules opaque, and gaseous luminosity promotes Jeans instability by raising the average molecular weight of the gas which reduces the ‘sound crossing time’, so globules in their opaque excited state are subject to condensing stars.

II.   Globule clusters: Bok globules are sticky, making them tend to clump into clusters unlike star clusters which tend to dissociate over time. Globule-globule close encounters may sometimes result in a gravitationally-bound state since globules can internally absorb energy and angular momentum, making them stickier than stellar-stellar close encounters which are highly elastic by comparison.

III.   Giant molecular clouds are globule clusters on shallow-inclination orbits to the galactic disk plane that have ‘decloaked’ into the excited state due to excessive exposure to stellar radiation, and are on their way to becoming gravitationally-bound star clusters.  Globule clusters on steep-inclination halo orbits spend less time crossing the disk plane and thus are less at risk to ‘going nuclear’.
………………..

‘Reionization’ = endothermic globule condensation within preexisting proto-galaxies:

The epoch of ‘recombination’ of electrons with protons into neutral hydrogen, officially occurred around 378,000 years after the Big Bang, but if proto-galaxies had previously condensed a majority of the hydrogen and helium continuum into gravitationally-bound proto-galaxies as suggested here, then recombination may have required many millions of years to penetrate the hottest densest regions of proto-galaxies, namely galactic cores.

After a long period of expansive cooling, partial ‘reionization’ of the universe occurred over an extended time frame, beginning about 150 million years after the Big Bang and ending about 1 billion years after the Big Bang. Reionization is suggested to have condensed the vast majority of the primordial hydrogen and helium continuum within proto-galaxies into gravitationally-bound ‘globules’ on the order of 100 solar masses. Gravitational collapse into gravitationally-bound globules may have been promoted by nearly-isothermal core temperatures as a result of endothermic dissociation of molecular hydrogen and endothermic hydrogen ionization. Within a nearly homogeneous continuum, gravitational attraction from beyond is significant factor in promoting thermal rebound, so nearly-isothermal core conditions may be a requirement for inducing gravitational (Jeans) instability (GI) within a continuum.

The long duration of suggested globule condensation (reionization) likely occurred from the outside in, beginning with condensation of the cooler outer halo which progressed in to the super massive black hole in the center. (Globular clusters are an interesting sidelight as to whether they were the result of an earlier proto-condensation or the result of a later accretionary aggregation.)
………………..

Endothermic-mediated gravitational instability:

The initial gravitational collapse in protostars is nearly isothermal as long as the contracting cloud remains transparent to infrared radiation. When the central density in protostars reaches about 10^-13 g/cm-3, a small region starts to become opaque, “and the compression become approximately adiabatic”. “The central temperature and pressure then begin to rise rapidly, soon becoming sufficient to decelerate and stop the collapse at the centre. There then arises a small central ‘ core ‘ in which the material has stopped collapsing and is approaching hydrostatic equilibrium” [formation of a first hydrostatic core (FHSC)]. “The initial mass and radius of the core are about 10^31 g and 6×10^13 cm, respectively, and the central density and temperature at this time are about 2 x 10^-10 g/cm-3 and 170° K.”
(Larson 1969)

Larson suggests the second hydrostatic core begins forming at about 2000 K when hydrogen molecules begin to dissociate. “This reduces the ratio of specific heats, gamma, below the critical value 4/3, with the result that the material at the center of the core becomes unstable and begins to collapse dynamically.” (Larson 1969) However, experimental testing suggests that molecular hydrogen dissociation occurs over a temperature range of around 6,000 K – 8,000 K (Magro et al. 1996) which may grade directly into hydrogen ionization, forming mixture of molecular-hydrogen + atomic-hydrogen + plasma. Figure 3 in Magro shows the nearly-isothermal decrease in kinetic energy occurring in the dissociation/ionization temperature range, indicating an endothermic event which promote run-away gravitational collapse to form the ‘second hydrostatic core’ (SHSC).

Star condensation by Jeans instability within Bok globules today is suggested to be an almost perfect analogy for globule condensation during reionization, with higher mass compensating for the higher ambient temperature of the early universe.

Larson, Richard B., (1969), NUMERICAL CALCULATIONS OF THE DYNAMICS OF A COLLAPSING PROTO-STAR, MNRAS (1969) 145, 271-295.

Magro, W.R.; Ceperley, D.M.; Pierleoni, C.; and Bernu, B., (1996), Molecular Dissociation in Hot, Dense Hydrogen, Physical Review Letters, 19 February 1996, Volume 76, Number 8.
………………..

Population III stars:
The largest globules of several hundred solar masses or more may have failed to thermally rebound after undergoing endothermic gravitational collapse, continuing their spontaneous collapse to become the first stars of the universe, known as Population III stars. And Population III stars likely had super-intense Wolf-Rayet stellar wind phases, seeding galaxies and globular clusters with stellar metallicity prior to their rapid demise in supernovae and hypernovae. Then as today, stellar metallicity was scavenged by gravitationally-bound globules, raising the metallicity of the following generation of Population II stars.

Globules as Dark Matter:

“Bok globules are dark clouds of dense cosmic dust and gas in which star formation sometimes takes place. Bok globules are found within H II regions, and typically have a mass of about 2[1] to 50 solar masses contained within a region about a light year or so across.” (Bok globule, Wikipedia)

Everyone knows Bok globules are opaque due to their gaseous stellar metallicity, of which carbon monoxide is generally measured as a proxy for all metallicity, but what if they have a Jekyll and Hyde phases in which their normal phase is the exact opposite of one of their most prominent characteristics, their jet-black absorption of nearly all frequencies above infrared? Imagine that in the absence of strong stellar radiation, the opaque stellar metallicity ‘snows out’ and accretes into icy chondrules, leaving behind only molecular hydrogen, helium which don’t absorb below ultraviolet, turning invisible. Thus it’s suggested that the normal phase of Bok globules is invisibility (cold dark matter), but they can ‘decloak’ to become opaque (described as ‘luminous’ in the sense that they absorb light) when exposed to giant stars that sublime the most volatile compounds of their icy chondrules.

Definitions,
Halo globules: the invisible phase of gravitationally-bound primordial globules with stellar metallicity frozen into icy chondrules which are typically found in galactic halos.
Bok globules: the opaque (luminous) phase of globules in giant molecular clouds containing visible stellar metallicity in gaseous form which are typically found in the galactic plane.

Eponymously-named, gravitationally-bound primordial (Bok) globules cooled over the intervening 13 billion years to become ‘the coldest objects in the natural universe’. At the bitterly-cold temperatures of ca. 10 Kelvins above absolute zero, the vast majority of their luminous stellar metallicity is suggested to snow out into icy chondrules, leaving behind virtually-invisible molecular hydrogen and helium which do not absorb below the ultraviolet range, rendering globules dark.
“Molecular hydrogen is very difficult to detect. None of its transitions lie in the visible part of the spectrum. It has no radio lines. The molecular hydrogen is a homo nuclear molecule and has no permanent dipole moment. Because of this it does not have rotation vibration spectrum.” (PHYSICS AND UNIVERSE)

So globules are suggested to be the cold dark matter (CDM) reservoirs of galactic halos with more-recently-absorbed stellar metallicity sequestered into icy chondrules, rendering halo globules essentially invisible. Gravitationally-bound globules may act like sponges to loose gas in galactic halos, as well as in spiral plane of spiral galaxies disk-crossing halo orbits will take them through the spiral plane twice per orbit around the galactic core. And relatively-high molecular weight of stellar metallicity will tend to diffuse inward across their vast surfaces, making gravitationally-bound globules composed of chiefly highly-volatile hydrogen and helium very-efficient sponges of high-molecular-weight stellar metallicity.
………………..

‘Globule clusters’, or sticky globules vs. elastic stars:

Dynamic interactions between close encounters of solitary stars in the spiral arms of galaxies are very-nearly perfectly elastic due to their relatively small diameters compared to interstellar distances, and due to the symmetry of their spherical shapes which are difficult to tidally distort by close encounters.

Gravitationally-bound globules, by comparison, are more similar to entire galaxies than individual stars, with globule close encounters and mergers suggested to be very similar to simulations of (only slightly under damped) galactic mergers that barely overshoot and quickly merge into a single (hydrostatic) mass. Globules like galaxies have billions of internal components which can absorb kinetic and potential energy and linear and angular momentum. So if solitary stars are similar to billiard balls that elastically ricochet off one another, globules are closer to blobs of mercury that merge and fragment in collisions. Not only can globules absorb energy and (angular) momentum internally in 3 dimensions, but they can also fragment, merge and evaporate. So while stellar close encounters clearly conserve energy and momentum, close encounters of globules may not appear to do so, by departing at a slower speed than their relative approach speed. Thus globules are stickier than stars and are suggested to tend to clump together, forming ‘globule clusters’.

The relative homogeneity of stellar metallicity abundances between stars in open clusters compared to nearby stars suggests mixing within the giant molecular cloud prior to star condensation. Star-to-star variations in logarithmic abundance within an open cluster are typically 0.01 − 0.05 of many elements compared to 0.06 − 0.3 seen in the interstellar medium from the vicinity of the cluster. (Feng and Krumholz 2014)

Additionally, the superabundance of Bok globules in giant molecular clouds and their super scarcity elsewhere argues for their extreme clumping into clusters and for their normal state of invisibility beyond the galactic plane.

Giant molecular clouds (GMCs), the nuclear option:
Repeated passages through the galactic plane may tend to drag dark-matter globule clusters into progressively shallower halo orbits with progressively longer disk-passage times with progressively longer exposures to stellar radiation and hot interstellar plasma of the galactic plane until the larger globules collapse to form supergiant stars which may trigger more GI in Bok globules until all the Bok globules either convert to stars, brown dwarfs or rogue planets or evaporate into tenuous gas.

Jeans instability:
Gaseous stellar metallicity raises the average molecular weight of the gas phase of Bok globules, decreasing the speed of sound which reduces their ability to rebound from positive pressure spikes. As long as the sound-crossing time is less than the free-fall time, the system rebounds, but if increasing gaseous metallicity causes the sound-crossing time to exceed the free-fall time, gravity wins and the region undergoes gravitational collapse to form a star. Thermal and radiative evaporation of volatile hydrogen from the vast surface area of Bok globules (nominally a half light year across) will also increase the average molecular weight of the gas which may cause Jeans instability in smaller than star-sized masses, enabling brown dwarfs and rogue (gas-giant) planets to condense inside GMCs.

So clustering of globules into globule clusters may be the normal state for gravitationally-bound globules even after billions of years of passages through the galactic plane; although without allowing for breaking up and reforming of clusters over time (but not to a greater extent than the measured homogeneity of the resulting star clusters would permit). If globules tend to cluster, gravitationally-bound open star clusters tend to dissociate over time on a time scale on the order of 100s of millions of years if not sooner, accounting for the long tail at the younging end of the ‘list of open clusters’ from Wikipedia (which is more or less biased toward young clusters by selection effects). With the comparitive rarity of solitary Bok globules unassociated with larger nebulosity, the vast majority of galactic globules must be trapped inside globule clusters.

Snowball Earth:
If globule clusters on shallow inclinations to the galactic plane are doomed to luminosity, globule clusters on steeper inclinations may shoot thorough the galactic plane with little impact either on the stars or on the globules. The two or more Snowball Earth episodes in the late Proterozoic Eon are suspected to have been caused by close encounters or passages through Bok globules of a single globule cluster, causing tidal warming on the supracrustal-rock surface of scattered disc objects (SDOs) of the scattered disc, causing supracrustal-rock subsidence and melting of glacial cover, dumping diamictite and precipitating cap carbonates. Then SDOs containing cap carbonates subsequently impacted Earth, causing extinction events.

No estimate has yet been made as to the likely size distribution of globule clusters originally or those remaining today, but if globular clusters are are their most-massive manifestations, then larger clusters are apparently more suspectable to the ‘nuclear option’ of converting to stars. Whether gravitationally-bound proto-globular-clusters preexisted globule condensation during reionization is undecided and even spiral proto-galaxy condensation has numerous questions and problems which are listed at the end.
………………..

Dearth of dark matter in elliptical galaxy problem:

Non-baryonic elementary-particle dark-matter hypotheses (WIMPs, axions, sterile neutrinos et al.) have trouble explaining the low dark matter to luminous matter ratios observed in elliptical galaxies, whereas the alternative dark-matter globule-cluster ideology predicts that globule- globule collsions and close encounters with giant stars will tend to cause halo globules to undergo gravitational instability which may cause their entire globule cluster to go nuclear, converting all the globules in the gravitationally-bound globule cluster to stars, brown dwarfs, rogue planets and luminous gas.

“Current thinking is that most if not all elliptical galaxies may be the result of a long process where two or more galaxies of comparable mass, of any type, collide and merge.” (Elliptical galaxy, Wikipedia)

“The kinematics of the outer parts of three intermediate-luminosity elliptical galaxies have been studied using the Planetary Nebula Spectrograph. The galaxies’ velocity dispersion profiles are found to decline with radius; dynamical modeling of the data indicates the presence of little if any dark matter in these galaxies’ halos. This surprising result conflicts with findings in other
galaxy types, and poses a challenge to current galaxy formation theories.”
(Romanowsky et al. 2003)

“Whether NGC 7507 is completely dark matter free or very dark matter poor, this is at odds with predictions from current ΛCDM cosmological simulations.”
(Lane et al. 2014)

Abstract
“There is strong evidence that the mass of the Universe is dominated by dark matter, which exerts gravitational attraction but whose exact nature is unknown. In particular, all galaxies are believed to be embedded in massive haloes of dark matter1, 2. This view has recently been challenged by the observation of surprisingly low random stellar velocities in the outskirts of ordinary elliptical galaxies, which has been interpreted as indicating a lack of dark matter3, 4. Here we show that the low velocities are in fact compatible with galaxy formation in dark-matter haloes. Using numerical simulations of disk-galaxy mergers5, 6, we find that the stellar orbits in the outer regions of the resulting ellipticals are very elongated. These stars were torn by tidal forces from their original galaxies during the first close passage and put on outgoing trajectories. The elongated orbits, combined with the steeply falling density profile of the observed tracers, explain the observed low velocities even in the presence of large amounts of dark matter. Projection effects when viewing a triaxial elliptical can lead to even lower observed velocities along certain lines of sight.”
(Dekel et al. 2005)
This simulation showing that highly-eccentric orbits could explain stellar rotation rates in terms of typical spiral-galaxy-dark-matter ratios feels like an attempt to explain away low dark-matter measurements in elliptical galaxies, but at least it demonstates the lack of concensus.
………………..

Dekel, A.; Stoehr, F.; Mamon, G. A.; Cox, T. J.; Novak, G. S.; and Primack, J. R., 2005, Lost and found dark matter in elliptical galaxies, Nature 437, 707-710 (29 September 2005)

Lane, Richard R.; Salinas, Ricardo; and Richtler, Tom, 2014, Dark Matter Deprivation in Field Elliptical Galaxy NGC 7507⋆, Astronomy & Astrophysics manuscript no. NGC7507 ˙spectra˙ accepted December 11, 2014.

Romanowsky, Aaron J.; Douglas, Nigel G.; Arnaboldi, Magda;, Kuijken, Konrad; Merrifield, Michael R.; Napolitano, Nicola R.; Capaccioli, Massimo; and Freeman, Kenneth C., 2003, A Dearth of Dark Matter in Ordinary Elliptical Galaxies, Science 301:1696-1698, 2003.
………………..

Proto-galaxy Nucleation (Catastrophism vs. Uniformitarianism):

WIMP cold dark matter in ΛCDM (Lambda Cold Dark Matter) dictates bottom up formation of galaxies from clumping dark matter which in turn drew in baryonic matter in which large spiral galaxies are thought to form from gradual mergers of smaller, older, dwarf galaxies. But bottom-up ΛCDM has trouble explaining the thin spiral structure and the typical specific angular momentum of spiral galaxies in a context of random galaxy mergers.

An alternative top-down ideology suggests condensation of spiral galaxies directly from the BBN continuum, perhaps shortly after BBN ran to completion about 20 minutes after the Big Bang, with gravitational instabilities centered around local inhomogeneities. Imagine shear planes in the BBN continuum, like geological faults or weather fronts, across which the continuum generally flowed in opposite directions. And since offset linear momentum is equivalent to (unbound) angular momentum, shear zones may represent sources of angular momentum for spiral galaxy nucleation. (Imagine a pair of cannonballs chained together and spinning around their common barycenter with a specific angular momentum. If the chain breaks, the cannonballs fly off in opposite directions with equal and opposite linear momentum with their vectors offset by the original length of the chain. Offset linear momentum = angular momentum.)

But the most prominent large-scale features in the universe are galaxy filaments, not galaxy walls, and even galaxy walls are elongated in one direction, so perhaps the one-dimensional intersection of two two-dimensional shear planes could have provided the conditions necessary for nucleating spiral galaxies along linear filaments with relatively uniform specific angular momentum.

A perpendicular linear offset across a shear zone (represented by a second intersecting shear zone) would tend to bring gas moving in opposite directions into direct collision which might create a pressure spike sufficient to promote gravitational instability around vortexes created by offset linear momentum.

But local pressure spikes would tend to thermally rebound since gas compression would raise the local temperature above that of the surrounding ambient temperature. Additionally, the nearly-uniform outward gravitational attraction from the continuum beyond cancels all but the differential mass of any local inhomogeneity except to the extent of the short reach of (gravitational) light cones in the very-early universe.

If, however, gravitational compression of a local inhomogeneity could reach the BBN temperature range before thermally rebounding, endothermic dissociation of helium (helium fission) would once again clamp the temperature to the BBN temperature range, promoting nearly-isothermal gravitational collapse into gravitationally-bound proto-galaxies.

Gravitational instability (GI) resulting in a gravitationally-bound state is suggested to be a type of phase-change, and thus the proto-galaxy condensation epoch will be defined as a phase change event in the early universe.

Gravitational collapse apparently continued beyond the BBN temperature range in proto-galactic cores, ending in the formation of super-massive black holes (SMBHs) inside gravitationally-bound proto-galaxies of the very-early universe, with the specific angular momentum of the collapsing gas determining the specific mass ratio of the SMBH to its host proto-galaxy. Then ‘BBN rebound’ within gravitationally-bound proto-galaxies reburned the vast majority of the helium-fission products.

BBN rebound, however, was not the homogeneous event of primary BBN and it apparently leaked intermediate reaction products, such as deuterium and tritium, past the inward-moving BBN-rebound fusion horizon, resulting in elevated concentrations of deuterium and lithium-7 (lithium-7, a tritium by-product) above and beyond the concentrations predicted by primary BBN modeling. Deuterium concentrations appear to be nearly correct as calculated, assuming that dark matter is non-baryonic, but if it’s baryonic as suggested here, then both deuterium and lithium-7 are in excess of predicted concentrations, lending support to BBN rebound within proto-galaxies.

Recombination and baryon acoustic oscillations (BAO)
Some 379,000 years later, the inter(proto)galactic universe had supposedly cooled sufficiently for ‘recombination’ of electrons and protons into neutral hydrogen atoms at around 2000 K. Recombination within proto-galaxies would have been delayed for many millions of years, however, where hydrogen and helium densities were vastly higher than in intergalactic space. Radiation pressure of the cosmic microwave background (CMB) kept the ionized continuum from clustering prior to recombination when intergalactic space became neutral, creating sound waves in the plasma continuum. These sound waves led to the acoustic oscillations seen in cosmic microwave background (CMB) anisotropy data, but they are also suggested to have left an imprint in the clustering of galaxies. While acoustic oscillations in the CMB are not at odds with suggested early condensation of proto-galaxies, the effect should not be seen in preexisting galaxies. But galactic condensation ideology does not preclude a weak 150 Mpc BAO imprint in a secondary round of irregular galaxy formation following recombination by the conventional process of accretion.

The ‘dark ages’ followed ‘recombination’, so called because there were as yet no stars to shine, only the glow of gradually redshifting cosmic background radiation.

Questions and Problems:
1) If gravitational collapse of proto-galaxies continued all the way to forming super-massive black holes by endothermically-reversing BBN, then there should be visual indications of quasars during the dark ages before the formation of Population III stars 150 million years later.
2) Baryon acoustic oscillations (BAO):
BAO ‘sound horizon’ has apparently been observed in the clustering of galaxies which is on the order of 150 Mpc in today’s universe which occurred at photon decoupling, 379,000 years after the Big Bang. A CMB imprint is not at odds with proto-galaxy condensation, but preexisting spiral proto-galaxies should not show a BAO imprint; however, this does not exclude the possibility of a second round of irregular galaxy formation (by accretion) after recombination which may have a BAO imprint.
3) Big Bang Nucleosynthesis (BBN):
BBN baryon to photon ratio appears to give the correct helium-4 and hydrogen-2 (deuterium) concentration for a universe composed of 4/5 non-baryonic dark matter, but it can’t explain the observed lithium-7 anomaly. But in secondary ‘BBN rebound’, deuterium and tritium may have escaped the BBN-rebound fusion horizon, invalidating straightforward BBN predictions.
4) Any complete theory of galaxy formation will have to explain the size and angular momentum of spiral and irregular galaxies as well as the tilted angular momentum plane of satellite galaxies in the halo which tend to be oriented in a plane, variably offset from the spiral disk. And spiral galaxies in superclusters are observed to have similarly oriented rotations (CW or CCW), which hints at a structural level beyond galaxies.
—————

PHYLLOSILICATE PROPERTIES:

Shear thinning properties of phyllosilicates appear to promote earthquake-fault slippage, such as in the earthquake that caused the 11 March 2011 Japanese tsunami. Additionally, (certain) sheet-silicate slurries may promote rock fracturing as occur in stratovolcanoes. Inert and refractory phyllosilicates may subducted under continental plates where heat and pressure on phyllosilicate slurries may fracture the overlying plate, forming stratovolcanoes in which the (remote subducted and/or local devitrified) volcanic ash is the cause rather than the result of the eruption.

Additionally, phyllosilicates may have gotten injected into the upper mantle in large comet impacts which were expelled to form flood basalt. Evidence for rock fracturing properties of hot phyllosilicate slurries:

1) Volcanic ash (phyllosilicates) and steam are released by explosive stratovolcanoes that can blast away mountain sides.
2) Phyllosilicates are commonly used as drilling mud
3) Steam is used to fracture oil shale and shale has a high phyllosilicate content.
4) “Most mature natural faults contain a significant component of sheet silicate minerals within their core.” (Faulkner, Mitchell, Hirose, Shimamoto, 2009) Smectite was discovered in the fault that caused the 11 March 2011 Japanese tsunami which is thought to have facilitated the earthquake with a friction coefficient of .08. (Fulton et al. 2013)
5) Montmorillonite is the major component in non-explosive agents for splitting rock.

Finally, the shear thinning properties of phyllosilicates may contribute to catastrophic mud slides during heavy rains, liquefaction during earthquakes and high-velocity pyroclastic flows during volcanic eruptions of hot volcanic ash.
———–

REFERENCES:

Anosova, J, Orlov, V. V. and Pavlova, N. A., (1994), Dynamics of nearby multiple stars. The Alpha Centauri system, Astronomy and Astrophysics, 292, 115-118 (1984)

Artymowicz, Pawel and Lubow, Stephen H., (1994), DYNAMICS OF BINARY-DISK INTERACTION. I. RESONANCES AND DISK GAP SIZES, The Astrophysical Journal, 421:651-667, 1994 February 1

Bogard, Donald D., Dixon, Eleanor T., Garrison, Daniel H., (2010), Ar-Ar ages and thermal histories of enstatite meteorites, Meteoritics & Planetary Science Volume 45, Issue 5, pages 723–742, May 2010

Boley, Aaron C., (2009), THE TWO MODES OF GAS GIANT PLANET FORMATION, 2009 ApJ 695 L53

Bruskiewich, Patrick, (2007), The Lithium Anomaly and the 7Li(3He,4He)6Li Neutron Transfer Reaction, Ph.D. Thesis Proposal, Department of Physics and Astronomy, UBC, TRIUMF, Vancouver

Burnett, D. S. & Genesis Science Team, (2011), Solar composition from the Genesis Discovery Mission, PNAS May 9, 2011

Caciolli, A. et al., 2011, Revision of the 15N(p,γ)16O reaction rate and oxygen abundance in H–burning zones, Astron.Astrophys. 533 (2011) A66 arXiv:1107.4514 [astro-ph.SR].

Chiang, E., Youdin, A., (2009), FORMING PLANETESIMALS IN SOLAR AND EXTRASOLAR NEBULAE, arXiv:0909.2652

Choi, B. -G.; McKeegan, K. D.; Krot, A. N.; Wasson, J. T.. 1997, Magnetite in unequilibrated ordinary chondrites: evidence for an 17O-rich reservoir in the solar nebula, Conference Paper, 28th Annual Lunar and Planetary Science Conference, p. 227.

Connelley, Michael S., Reipurth, Bo, Tokunaga, Alan T., 2008, The Evolution of the Multiplicity of Embedded Protostars. II. Binary Separation Distribution and Analysis, The Astonomical Journal, Volume 135, Issue 6, pp. 2526-2536 (2008)

Cox, Gutmann and Hines, (2002), Diagenetic origin for quartz-pebble conglomerates, Geology, April 2002

Currie, Thayne, (2005), Hybrid Mechanisms for Gas/Ice Giant Planet Formation, The Astrophysical Journal, 629:549-555, 2005 August 10

Dhital, Saurav, West, Andrew A., Stassun, Keivan G., Bochanski, John J., (2010), SLOAN LOW-MASS WIDE PAIRS OF KINEMATICALLY EQUIVALENT STARS (SLoWPoKES): A CATALOG OF VERY WIDE, LOW-MASS PAIRS, The Astronomical Journal 139 (2010) 2566-2586

Driscoll, Charles T. and Schecher, William D., The Chemistry of Aluminum in the Environment, (1990), Environmental Geochemistry and Health, Vol. 12, Numbers 1-2, 28-49

Duke, Edward, Papike, James J., Laul, Jagdish C., (1992), GEOCHEMISTRY OF A BORON.RICH PERALUMINOUS GRANITE PLUTON: THE CALAMITY PEAK LAYERED GRANITE PEGMATITE COMPLEX, BLACK HILLS, SOUTH DAKOTA, Canadian Mineralogist Vol. 30, pp. 811-833 (1992)

Eskola, Pentti Eelis, (1948), The problem of mantled gneiss, Feb. 1948 Quarterly Journal of the Geological Society, 104, 461-457

Faulkner, Mitchell, Hirose, Shimamoto, (2009), The Frictional Properties of Phyllosilicates at Earthquake Slip Speeds, EGU General Assembly 2009, held 19-24 April, 2009 in Vienna, Austria

Fournier, R. O., The behavior of silica in hydrothermal solutions, (1985), Reviews in Economic Geology, v. 2, pp. 45–59.

Frost, Carol D., Frost, B. Ronald, Kirkwood, Robert and Chamberlain, Kevin R., (2006), The tonalite-trondhjemite-grandiorite (TTG) to grandoriorite-granite (GG) transition in the late Archean plutonic rocks of the central Wyoming Province, Can. J. Earth Sci. 43: 1419-1444 (2006)

Fulton, P. M.; Brodsky, E. E.; Kano, Y.; Mori, J.; Chester, F.; Ishikawa, T.; Harris, R. N.; Lin, W.; Eguchi, N.; Toczko, S.; Expedition 343, 343T and KR13-08 Scientists, (2013), Low Coseismic Friction on the Tohoku-Oki Fault Determined from Temperature Measurements, Science 6 December 2013: Vol. 342 no. 6163 pp., 1214-1217 DOI:, 10.1126/science.1243641

Goddard Release No. 10-03, (2010), Most Earthlike Exoplanet Started out as Gas Giant, Goddard Release No. 10-03

Golimowski, David A., Schroeder, Daniel J., (1998), WIDE FIELD PLANETARY CAMERA 2 OBSERVATIONS OF PROXIMA CENTAURI: NO EVIDENCE OF THE POSSIBLE SUBSTELLAR COMPANION, The Astronomical Journal, 116:440-443, 1998 July

Hills, J. G., (1989), The Hard-Binary vs Soft-Binary Myth, Bulletin of the American Astronomical Society, Vol. 21, p.796

Howard, Andrew W et al., (2012), PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER, Andrew W. Howard et al. 2012 ApJS 201 15 doi:10.1088/0067-0049/201/2/15, and arXiv:1103.2541v1 [astro-ph.EP] 13 Mar 2011

Hyodo, Masayuki, Matsu’ura, Shuji, Kamishima, Yuko et al., (2011), High-resolution record of the Matuyama-Brunhes transition constrains the age of Javanese Homo erectus in the Sangiran dome, Indonesia, Proc Natl Acad Sci U.S.A. 2011 December 6, 108(49): 19563-19568

Ishizuka, O.; Uto, K.; Yuasa, M., (2003), Volcanic history of the back-arc region of the Izu-Bonin (Ogasawara) arc, Geological Society, London, Special Publications 01/2003; 219(1):187-205. DOI: 10.1144/GSL.SP.2003.219.01.09

Johansen, Anders, Oishi, Jeffrey S., Low, Mordecai-Mark Mac, Klahr, Hurbert, Henning, Thomas and Youdin, Andrew, (2007), Rapid planetesimal formation in turbulent circumstellar disks, Letter to Nature 448, 1022-1025 (30 August 2007)

Joy, Katherine H., Zolensky, Michael E., Nagashima, Kazuhide, Huss, Gary R., Ross, D. Kent, McKay, David S., Kring, David A., (2012), Direct Detection of Projectile Relics from the End of the Lunar Basin–Forming Epoch, Science Online May 17, 2012 DOI: 10.1126/science.1219633

Kasliwal, Mansi M., Kulkarni, Shri R. et al., (2011), PTF10FQS: A LUMINOUS RED NOVA IN THE SPIRAL GALAXY MESSIER 99, Astrophysics, 27 Mar 2011

Kelling, Thorben, Wurm, Gerhard, (2013), Accretion through the inner edges of protoplanetary disks by a giant solid state pump, arXiv:1308.0921 [astro-ph.EP]

Kennedy, G. C., (1950), A portion of the system silica-water, E. con. Geol., 47. 629-653

Krot, Alexander N.; Amelin, Yuri;, Cassen, Patrick; Meibom, Anders, Young chondrules in CB chondrites from a giant impact in the early Solar System, (2005), Nature 436, 989-992 (18 August 2005)

Larson, Richard B., (1969), NUMERICAL CALCULATIONS OF THE DYNAMICS OF A COLLAPSING PROTO-STAR, MNRAS (1969) 145, 271-295

Levine, Jonathan, Becker, Timothy A., Muller, Richard A., Renne, Paul R., (2005), 40Ar/39Ar dating of Apollo 12 impact spherules, Geophysical Research Letters, Vol. 32, L15201, doi:10.1029/2005GL022874, 2005

Lelli, Federico, (2014), The inner regions of disk galaxies: a constant baryonic fraction?, arXiv:1406.5189 [astro-ph.GA]

Levinson, Harold F. and Dones, Luke, (2007), Comet Populations and Cometary Dynamics, Chapter 31, Encyclopedia of the Solar System (edited by Lucy-Ann McFadden, Paul Robert Weissman and Torrence V. Johnson) 1st Ed. 1999, 2nd Ed. 2007, Academic Press

Lewis, Kevin W.; Aharonson, Oded; Grotzinger, John P.; Kirk, Randolph L.; McEwen, Alfred S.; Suer, Terry-Ann, (2008), Quasi-Periodic Bedding in the Sedimentary Rock Record of Mars, Science 5 December 2008: Vol. 322 no. 5907 pp. 1532-1535 DOI: 10.1126/science.1161870

Li, Dafang, Zhang, Ping & Yan, Jun, (2011), Quantum molecular dynamics simulations for the nonmetal-metal transition in shocked methane, Condensed Matter Materials Science, 24 March 2011, arXiv:1012.4888v2

Lissauer, J. J., Stevenson, D. J., (2007), Formation of Giant Planets, Protostars and Planets V, B. Reipurth, D. Jewitt, and K. Keil (eds.), University of Arizona Press, Tucson, 951 pp., 2007., p.591-606

Little, T. A., Hacker, B. R., Gordon, S. M., Baldwin, S. L., Fitzgerald, P. G., Ellis, S., Korchinski, M., (2011), Diapiric exhumation of Earth’s youngest (UPH) ecogites in the gneiss domes of the D’Entrecasteaux Islands, Papua New Guinea, Tectonophysics 510 (2011) 39-68

Low, C; Lynden-Bell, D., (1976), The minimum Jeans mass or when fragmentation must stop, Monthly Notices of the Royal Astronomical Society, vol. 176, Aug. 1976, p. 367-390

Magro, W.R.; Ceperley, D.M.; Pierleoni, C.; and Bernu, B., (1996), Molecular Dissociation in Hot, Dense Hydrogen, Physical Review Letters, 19 February 1996, Volume 76, Number 8

Malavergne, Valérie, Toplis, Michael J., Berthet, Sophie, Jones, John, (2010), Highly reducing conditions during core formation on Mercury: Implications for internal structure and the origin of a magnetic field, Icarus, Volume 206, Issue 1, March 2010, Pages 199-209

Martin, H., Smithies, R. H., Moyen, J.-F. and Champion, D., (2005), An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution, Lithos, Volume 79, Issues 1-2, January 2005, Pages 1-24

Marty, B.; Chaussidon, M.; Furi E.; Hashizume, K.; Podosek, F.; Wieler, R.; and Zimmermann L., 2003, Nitrogen isotopes in lunar soils: a record of contributions to planetary surfaces in the inner solar system, Ecole Nationale Supérieure de Géologie 54501 Vandoeuvre-lès-Nancy Cedex France Space Science Reviews (Impact Factor: 5.87). 04/2003; 106(1):175-196.

Marty, B., Chaussidon, M., Wiens, R. C., Jurewicz, A. J. G., Burnett, D. S., (2011), A 15N-Poor Isotopic Composition for the Solar System As Shown by Genesis Solar Wind Samples, Science 24 June 2011 Vol. 332 no. 6037 pp. 1533-1536

Matese, J.J.; Witman, P.G.; Innanen, K.A. and Valtonen, M.J., (1998), Variability of the Oort Cloud Comet Flux: Can it be Manifest in the Cratering Record?, J. Andersen (ed.) Highlights of Astronomy, Volume 11A, 252-256

Matese, J. J., Whitman, P. G., Whitmire, D. P., (1999), Cometary evidence of a massive body in the outer Oort cloud, Icarus 141 (1999)

Matese, John, J., Whitmire, Daniel P., (2011), Persistent evidence of a jovian mass solar companion in the Oort cloud, Icarus 211 (2011) 926-938

McKeegan, K. D., Kallio, A. P. A., Heber, V. S., Jarzebinski, G., Mao, P. H., Coath, C. D., Kunihiro, T., Wiens, R. C., Nordholt, J. E., Moses Jr., R. W., Reisenfeld, D. B., Jurewicz, A. J. G., Murnett, D. S., (2011), The Oxygen Isotopic Composition of the Sun Inferred from Captured Solar Wind, Science 24 June 2011 Vol 332 no. 6037 pp. 1528-1532

de Meijer, R. J. and van Westrenen, W., (2010), An Alternative Hypothesis on the Origin of the Moon, arXiv:1001.4243v1 [astro-ph.EP]

Muller, R. A., Becker, T. A., Culler, T. S., and Renne, P. R., (2000), Solar System impact rates measured from lunar spherule ages, in Peucker-Ehrenbrink, B., and Schmitz, B., eds., Accretion of extraterrestrial matter throughout Earth’s history: New York, Kluwer Publishers, 466 p.

Mumma M. J., Gibb, E. L., Russo, N. Dello, DiSanti, M. A. Magee-Sauer, K., (2003), Methane in Oort cloud comets, Adv. Space Res., 31, 2563; Icarus 165 (2003) 391–406

Murthy, V. Rama & Hall, H. T., (1970), Physics of The Earth and Planetary Interiors, Volume 2, Issue 4, June 1970, Pages 276-282

NASA RELEASE : 12-425, (2012), NASA Astrobiology Institute Shows How Wide Binary Stars Form, RELEASE : 12-425 ammonium nitrate

Nesvorny, David, Youdin, Andrew N., Richardson, Derek C., (2010), Formation of Kuiper Belt Binaries by Gravitational Collapse, The Astronomical Journal 140 (2010) 785, doi:10.1088/0004-6256/140/3/785

Nittler, L. R., (2005), Calcium-Aluminum-Rich Inclusions Are Not Supernova Condensates, Chondrites and the Protoplanetary Disk ASP Conference Series, Vol ###, 2005

Nittler, Larry R., Hoppe, Peter, (2005), ARE PRESOLAR SILICON CARBIDE GRAINS FROM NOVAE ACTUALLY FROM SUPERNOVAE?, The Astrophysical Journal, 631:L89-L92, 2005 September 20

Nuth, J. A., Johnson, N. M., Elsila-Cook, J., and Kopstein, M., (2011), CARBON ISOTOPIC FRACTIONATION DURING FORMATION OF MACROMOLECULAR ORGANIC GRAIN COATINGS VIA FTT REACTIONS, 42nd Lunar and Planetary Science Conference (2011)

Ofek, E. O.; Kulkarni, S. R.; Rau, A.; Cenko, S. B.; Peng, E. W.; Blakeslee, J. P.; Cote, P.; Ferrarese, L;. Jordan, A.; Mei, S.; Puzia, T.; Bradley, L. D.; Magee, D.; Bouwens, R., The Environment of M85 optical transient 2006-1: constraints on the progenitor age and mass, (2007), arXiv:0710.3192 [astro-ph]

Ogliore, R. C., Huss, G. R., Nagashima, K, (2011), Incorporation of a Late-forming Chondrule into Comet Wild 2, arXiv:1112.3943v2 [astro-ph.EP] 30 Dec 2011

Palme, H. & O’Neill, Hugh St. C., (2003), Cosmochemical Estimates of Mantle Composition, Treatise On Geochemistry, Volume 2; pp. 1-38, ISBN: 0-08-044337-0

Patiño Douce A.E., Harris N., (1998), Experimental constraints on Himalayan Anatexis, Journal of Petrology, v. 39, no. 4, p. 689-710

Patiño Douce, Alberto E., (1999), What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?, pp 55-75, From: Castro, Fernandez, C. and Vigneresse, J. L. (eds) Understanding Granites: and Classical Techniques, The Geological Society of London

Peplowski, Patrick N., Evans, Larry G., Hauck II, Steven A., McCoy, Timothy J., Boynton, William V., Gillis-Davis, Jeffery J., Ebel, Denton S., Goldsten, John O., Hamera, David K., Lawrence, David J., McNutt Jr., Ralph L., Nittler, Larry R., Solomon, Sean C., Rhodes, Edjar A., Sprague, Ann L., Starr, Richard D., Stockstill-Cahill, Karen R., (2011), Radioactive Elements on Mercury’s Surface from MESSENGER: Implications for the Planet’s Formation and Evolution, Science Vol. 333, 30 September 2011

Pieters, C. M., Ammannito, E., Blewett, D. T., Denevi, B. W., De Sanctis, M. C., Gaffey, M. J., Le Corre, L., Li, J.-Y., Marchi, S., McCord, T. B., McFadden, L., A., Mittlefehldt, D. W., Nathues, A., Palmer, E., Reddy, V., Raymond, C. A., and Russell, C. T., (2012), Distinctive space weathering on Vesta from regolith mixing processes, Nature 491, 79-82 (01 November 2012), doi:10.1038/nature11534

Pinte, C., Menard, F., Manset, N., Bastien, P., (date?), TOMOGRAPHY OF THE INNER EDGE OF PROTOPLANETARY DISKS, published?

Podosek F. A. and Cassen P., (1994), Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula., Meteoritics, 29, 6–25

Rau, A.; Kulkarni, S. R.; Ofek, E. O.; Yan, L., Spitzer Observations of the New Luminous Red Nova M85 OT2006-1, (2007), The Astrophysical Journal, Volume 659, Issue 2, pp. 1536-1540

Rimstidt, J. D. and Barnes, H. L., (1980), The kinetics of silica-water reactions., Geochim. Cosmochim. Acta, Vol. 44 (11), pp.1683-1699

Rimstidt, J. D, (1997), Quartz solubility at low temperatures., Geochim. Cosmochim. Acta, Vol. 61 (13), pp.2553-2558

Ryder, R. T., (2002), Appalachian Basin Province (067), United States Geological Survey (USGS)

Sandeman, Clark, Scott and Malpas, (2000), The Kennack Gneiss of the Lizard Peninsula, Cornwall, SW England: commingling and mixing of mafic and felsic magmas accompanying Givetian continental incorporation of the Lizard ophiolite, Journal of the Geological Society; November 2000; v. 157; no. 6; p. 1227-1242

Schmidt, Burkhard C. & Keppler, Hans, (2002), Earth and Planetary Science Letters, Volume 195, Issues 3-4, 15 February 2002, Pages 277-290

Schroeder, Daniel J., Golminowski, David A., Brukardt, Ryan A., Burrows, Christopher J., Caldwell, John J., Fastie, William G., Ford, Holland C., Hesman, Bridgette, Kletskin, Ilona, Krist, John E., Royle, Patricia and Zubrowski, Richard A., (2000), A SEARCH FOR FAINT COMPANIONS TO NEARBY STARS USING THE WIDE FIELD PLANETARY CAMERA 2, The Astronomical Jorunal, 119:906-922, 2000 February

Schultz, A. B., Hart, H. M., Hershey, J. L., Hamilton, F. C., Kochte, M., Bruhweiler, F. C., Benedict, G. F., Caldwell, John, Cunningham, C., Wu, Nailong, Frantz, O. G., Keyes, C. D. and Brandt, J. C., (1998), A POSSIBLE COMPANION TO PROXIMA CENTAURI, The Astronomical Journal, 115:345-350, 1998 January

Sharov, Alexei A., Gordon, Richard, (2013), Life Before Earth, arXiv:1304.3381 [physics.gen-ph]

Shi, Ji-Ming, Krolik, Julian H., Lubow, Stephen H., Hawley, John F., (2012), Three Dimensional MHD Simulation of Circumbinary Accretion Disks: Disk Structures and Angular Momentum Transport, arXiv:1110.4866v2 [astro-ph.HE] 7 Feb 2012

Staal, C. R., Williams, P. F., (1983), Evolution of a Svecofennian-mantled gneiss dome in SW Finland, with evidence for thrusting, Tectonophysics, Volume 74, Issues 3–4, 20 April 1981, Pages 283-304

Tohline, J. E., Cazes, J. E., Cohl, H. S., (1999), THE FORMATION OF COMMON-ENVELOPE, PRE-MAIN-SEQUENCE BINARY STARS, Astrophysics and Space Science Library Volume 240, 1999, pp 155-158

Tomida, Kengo, Tomisaka, Kohji, Tomoaki, Matsumoto, Yasunori, Hori, Satoshi, Okuzumi, Machida, Masahiro N., and Saigo, Kazuya, Arxiv 2012 (Draft Version January 1, 2013), RADIATION MAGNETOHYDRODYNAMIC SIMULATIONS OF PROTOSTELLAR COLLAPSE:
PROTOSTELLAR CORE FORMATION, arXiv:1206.3567V2 [astro-ph.SR] 28 Dec 2012

Urtson, Kristjan, (2005), Melt segregation and accumulation: analogue and numerical modelling approach, MSc. Thesis, University of Tartu

Wertheimer, Jeremy G. and Laughlin, Gregory, 2006, Are Proxima and Alpha Centauri Gravitationally Bound?, The Astronomical Journal, 132:1995-1997, 2006 November

Wielen, Fuchs and Dettbarn, (1996), On the birth-place of the Sun and the places of formation of other nearby stars, Astron. Astrophys. 314, 438

Yin, An, (2004), Gneiss domes and gneiss dome systems, Geological Society of America Special Paper 380
==================================================
by Dave Carlson
dave19128@gmail.com

P.S. Soliciting contributions, criticism and collaborators. Pseudonyms are acceptable and assistance will be attributed.

Posted in Uncategorized | 1 Comment