Snowball Solar System

Figure 1

Protostar system L1448 IRS3B, showing central binary pair of protostars (IRS3B-a & IRS3B-b) orbited by a less massive but much brighter companion protostar (IRS3B-c) in a circumbinary orbit.

The brighter companion star points to an alternative flip-flop formation mechanism, where the companion formed first at the center of the system, followed by a twin-binary disk instability, which ‘condensed’ a much-larger twin-binary pair from a massive accretion disk. Equipartition during subsequent orbital interplay caused the three stellar components to evolve into a hierarchical trinary system, in which the smaller, older core evaporated into a circumbinary orbit around the younger more-massive twin-binary pair, which spiraled in to form a close binary.

Image Credit: Bill Saxton, ALMA (ESO/NAOJ/NRAO), NRAO/AUI/NSF – Publication: John Tobin (Univ. Oklahoma/Leiden) et al.


Figure 1

Protostar system L1448 IRS3B, showing central binary pair of protostars (IRS3B-a & IRS3B-b) orbited by a less massive but much brighter companion protostar (IRS3B-c) in a circumbinary orbit.

The brighter companion star points to an alternative flip-flop formation mechanism, where the companion formed first at the center of the system, followed by a twin-binary disk instability, which ‘condensed’ a much-larger twin-binary pair from a massive accretion disk. Equipartition during subsequent orbital interplay caused the three stellar components to evolve into a hierarchical trinary system, in which the smaller, older core evaporated into a circumbinary orbit around the younger more-massive twin-binary pair, which spiraled in to form a close binary.

Image Credit: Bill Saxton, ALMA (ESO/NAOJ/NRAO), NRAO/AUI/NSF – Publication: John Tobin (Univ. Oklahoma/Leiden) et al.


This alternative conceptual ideology suggests three novel primary mechanisms for the formation of gravitationally-bound objects:
– Flip-flop fragmentation (FFF)
– Trifurcation
– Hybrid accretion

– Flip-flop fragmentation (FFF), forming gas/ice-giant planets, brown dwarfs and companion stars:
     FFF suggests that excess angular momentum in collapsing molecular clouds may create accretion disks that are much more massive than their diminutive cores, and thus inertially dominate the system. Inertial dominance may initiate disk instability, which condenses 1 or 2 objects more massive than the central core. The more massive disk instability object(s) cause an inertial flip-flop where the diminutive core is injected into a satellite orbit around the much-larger, younger disk instability object(s).
     These former core satellites evolve into gas giant planets, brown dwarfs or companion stars. ‘Symmetrical FFF’ condenses a twin-binary pair of disk instability objects, while ‘asymmetrical FFF’ condenses a solitary disk instability object.

– Trifurcation, forming twin-binary pairs, such as, Jupiter-Saturn, Uranus-Neptune, & Venus-Earth:
     Trifurcation suggests that when symmetrical FFF condenses a twin-binary pair of disk instability objects, the twin-binary pair are capable of rotationally fragmenting the central core into 3 components, hence, trifurcation.
     During orbital interplay between the twin-binary pair of disk-instability objects and the diminutive central core, hyperbolic-trajectory close encounters transfer kinetic energy from the more-massive twin-binary components to the less-massive core by the mechanism of equipartition. Successive kinetic energy kicks ultimately evaporate the former core into a circumbinary orbit around the much-larger twin-binary pair.
     These close encounters also tend to transfer rotational kinetic energy to the core, which may cause the core to spin up to the point of distorting the core into a bar-mode instability. Additional rotational pumping may cause the bar-mode arms to pinch off into separate gravitationally-bound Roche spheres orbiting around the diminutive residual core in a process designated, ‘trifurcation’. Trifurcation, in turn, promotes next-generation trifurcation of the residual core, possibly forming multi generations of twin binary pairs. Trifurcation is the suggested origin of 4 sets of twin-binary pairs in our solar system, namely, (former) binary-Companion, Jupiter-Saturn, Uranus-Neptune, and Venus-Earth, with Mercury as the final residual core.

– Hybrid accretion, nominally forming super-Earths:
     Hybrid accretion (Thayne Curie 2005) is a suggested planet formation mechanism for forming planets by the hybrid mechanism of forming planetesimals by streaming instability followed by core accretion of these streaming-instability planetesimals. Trillions of planetesimals presumably condense by streaming instability against the magnetic corotation radius at the inside edge of protoplanetary disks. When core accretion reaches the nominal mass of a super-Earth around a solar-mass star, the newly-formed hybrid-accretion planet is able to clear its orbit, effectively pushing the inner edge of the accretion disk out to its outer resonances.
     Thereafter, a second generation of planetesimals may condense by streaming instability to form a second-generation hybrid-accretion planet. In this manor a cascade of hybrid-accretion planets may form from the inside out. Hybrid-accretion moons may also form by this mechanism, such as the larger planemo moons of Uranus.

A brief history of the solar system:
1) Symmetrical FFF — binary-Sun (disk-instability objects) + Brown Dwarf* (original core)
2) First-generation trifurcation — binary-Companion + SUPER-Jupiter* (residual core)
3) Second-generation trifurcation — Jupiter-Saturn + SUPER-Neptune* (residual core)
4) Third-generation trifurcation — Uranus-Neptune + SUPER-Earth* (residual core)
5) Fourth-generation trifurcation — Venus-Earth + Mercury(?) (residual core)
     A diminutive Brown Dwarf system with a much-more-massive accretion disk underwent symmetrical FFF, condensing a twin-binary pair of disk instability objects. The much greater overlying mass of the twin-binary disk-instability protostars resulted in a mass-segregation flip-flop, in which the diminutive Brown Dwarf core was evaporated into a circumbinary orbit around the twin-binary components, which concomitantly spiraled in to form binary-Sun. Equipartition during orbital close encounters not only evaporated Brown Dwarf outward, but also caused spin-up trifurcation, fragmenting Brown Dwarf into a twin-binary pair with presumed super-Jupiter-mass components. Since trifurcation engenders next-generation trifurcation by equipartition spin up, 1st-generation trifurcation engendered three successive generations of trifurcations, forming 2nd-generation Jupiter-Saturn, 3rd-generation Uranus-Neptune and 4th-generation Venus-Earth, with a leftover residual core, Mercury(?). The twin binary pair of super-Jupiters remained gravitationally bound to form binary-Companion, which orbited a few hundred AU from binary-Sun for 4 billion years. Binary-Sun spiraled in to merge at 4,567 Ma in a luminous red nova, and binary-Companion spiraled in to merge 4 billion years later at 635 Ma in an asymmetrical merger explosion that gave the newly-merged Companion escape velocity from the Sun. Mars is presumably a diminutive hybrid-accretion planet that formed around Brown Dwarf.

* Note, unorthodox capitalization indicates unorthodox definitions. ‘SUPER-Jupiter’, ‘SUPER-Neptune’ and ‘SUPER-Earth’ are the names for the objects from which Jupiter-Saturn, Uranus-Neptune and Venus-Earth arose respectively by trifurcation, where the objects may not meet the size requirements for orthodox super status. ‘Brown Dwarf’ is the name of the original solar system core which underwent symmetrical FFF followed by 4 generations of trifurcation. And ‘binary-Companion’ is the name of the former binary companion to the Sun, whose binary components likely had the mass of super-Jupiters. Finally, ‘binary-Sun’ is the name of the binary stellar pair that spiraled in to merge at 4,567 Ma to form the Sun.


Star formation stages:
1) Starless core: May be a transient phase or may progress to gravitational instability infall
2) Prestellar core: A gravitating prestellar core ends with the formation of the second hydrostatic core when hydrogen gas endothermically dissociates into atomic hydrogen at around 2000 K.
3) Protostar (Class 0, I, II, III): Begins with the formation of the second hydrostatic core.
4) Pre-main-sequence star: A T Tauri, FU Orionis, or larger (unnamed) pre-main-sequence star powered by gravitational contraction
5) Main-sequence star: Powered by hydrogen fusion

“Starless cores are possibly transient concentrations of molecular gas and dust without embedded young stellar objects (YSOs), typically observed in tracers such as C18O (e.g. Onishi et al. 1998), NH3 (e.g. Jijina, Myers, & Adams 1999), or dust extinction (e.g. Alves et al. 2007), and which do not show evidence of infall. Prestellar cores are also starless (M⋆ = 0) but represent a somewhat denser and more centrally-concentrated population of cores which are self-gravitating, hence unlikely to be transient.” (André et al. 2008)

In Jeans instability, the cloud collapses at an approximately free-fall rate nearly isothermally at about 10 K until the center become optically thick at ~10-13 g/cm3 after 105 yr (Larson 1969), at which point when the temperature begins to rise, forming a ‘first core’ or first hydrostatic core (FHSC). Supersonically infalling gas in the envelope is decelerated and thermalized at the surface of the first core (Masunaga et al. 1998).

When the temperature reaches about 2000 K, the hydrogen begins to dissociate endothermically, forming a ‘second core’, the birth of a protostar. The protostar grows in mass by accreting the infalling material from the circumstellar envelope, while the protostar keeps its radius at ~4 R☉ during the main accretion phase. (Masunaga et al. 1998)

“Enoch et al. (2009a) discovered a massive circumstellar disk of ∼1 M☉ comparable to a central protostar around a Class 0 object, indicating that (1) the disk already exists in the main accretion phase and (2) the disk mass is significantly larger than the theoretical
prediction.” (Machida et al. 2011)

“The size of the first core was found to vary somewhat in the different simulations (more unstable clouds form smaller first cores) while the size, mass, and temperature of the second cores are independent of initial cloud mass, size, and temperature.
Conclusions. Our simulations support the idea of a standard (universal) initial second core size of ~ 3 × 10−3 AU and mass ~ 1.4 ×10−3 M☉.”
(Vaytet et al. 2013)

“Class 0 objects are the youngest accreting protostars observed right after point mass formation, when most of the mass of the system is still in the surrounding dense core/envelope (Andre et al. 2000).”
(Chen et al. 2012)

“The compact components around the Class 0 protostars could be the precursors to these Keplerian disks. However, it is unlikely that such massive rotationally supported disks could be stably supported given the expected low stellar mass for the Class 0 protostars: they should be prone to fragmentation”.
(Zhi-Yun Li et al. 2014)

Hybrid accretion planets and moons:

An alternative planet formation mechanism proposed by Thayne Curie 2005 marries streaming instability with core accretion in a hybrid planet formation mechanism, designated here as, ‘hybrid accretion’.

Thayne Curie suggests this as a planet formation mechanism for forming gas/ice giant planets. Alternatively, this mechanism is suggested here as the mechanism for nominally-forming terrestrial super-Earths, rather than gas/ice giant planets with elevated gas concentrations.

Planetesimals are suggested to condense by streaming instability against a young stellar object’s magnetic corotation radius, at the inner edge of the accretion disk. These planetesimals may core accrete to form a hybrid accretion planet. When the hybrid-accretion planet reaches the nominal size of a super-Earth around a solitary Sun-sized star, super-Earth is able to clear its orbit of gas, dust and planetesimals, effectively pushing the inner edge of the protoplanetary disk out to its strongest outer resonances. Thereafter, a second generation of planetesimals may ‘condense’ by streaming instability against the super-Earth’s outer resonances, which may core accrete to form a second-generation super-Earth. In this way a multiple-generation ‘cascade’ of super-Earths may form from the inside out in low warm/hot orbits around solitary stars. Additionally, the process should create an asteroid belt beyond the hybrid accretion cascade comprised of leftover planetesimals.

The size of hybrid accretion planets will be a function of the central object’s mass, and indirectly its magnetic field strength, rotation rate and protoplanetary disk density, which sets the magnetic corotation radius. Debris disks may also form hybrid accretion planets, but debris disks will more likely form a solitary immature hybrid accretion planet, along with a smattering of smaller minor planets and an asteroid belt beyond. The high dust component of debris disks will presumably condense much-much-larger planetesimals than a more-gaseous protoplanetary disk. Mars is suggested to be a hybrid accretion planet formed around Brown Dwarf, prior to symmetrical FFF which condensed the stellar binary-Sun components from the oversized accretion disk. If most hybrid accretion objects found to date are in the super-Earth-mass range, it’s presumably because we’ve concentrated our searches for exoplanets around solar-mass dwarf stars. Larger stars, however, more often form in binary pairs or larger multiple-star systems, which are presumably not conducive to forming hybrid accretion planets.

Streaming instability planetesimals presumably condense at the inner edge of accretion disks around giant planets, as well. The 5 planemo moons of Uranus; Miranda, Ariel, Umbriel, Titania and Oberon, are perhaps the best example of a moony hybrid-accretion cascade in our solar system. At Saturn, Mimas, Enceladus, Tethys, Dione, Rhea, excepting Titan and presumably including Iapetus are a likely hybrid-accretion cascade of moons as well.

The observed pattern of Uranian moons, tending to increase in size with orbital distance but not tending to decrease in density is the suggested pattern of hybrid accretion, where the most distant planemo moon in a hybrid-accretion cascade may break the pattern, if it hadn’t reached maturity before the accretion disk dissipated.

– Hybrid Mechanisms for Gas/Ice Giant Planet Formation (Thayne Currie 2005),

Flip Flop Fragmentation (FFF):

This is an alternative conceptual ideology for the formation of gas/ice giant planets, brown dwarf satellites and companion stars around a larger central star, formed by a flip-flop process in which the system turns itself inside out. This suggests that ice/gas giant planets, brown dwarf planets, and companion stars may be the progenitors of their host star, and thus older than their host stars. Satellite objects formed by FFF are suggested to form in systems in which the accretion disk inertially dominates the system, that is, when the accretion disk is much more massive than than its central prestellar/protostellar object.

FFF (disk instability) of massive disks surrounding diminutive prestellar or protostellar objects is suggested to occur by means of (spiral) density waves, where the mode of the density wave dictates the type of disk instability. Two types of density-wave modes may undergo FFF:
1) an asymmetrical (m = 1 mode) density wave, which may condense a solitary disk instability object in a process designated, ‘asymmetrical FFF’, and
2) a symmetrical (m = 2 mode) density wave, which may condense a twin-binary pair of disk instability objects in a process designated, ‘symmetrical FFF’.

In a dark core with ‘excess’ angular momentum undergoing freefall collapse, by definition, the ‘excess’ angular momentum of the infalling gas will grow the accretion disk much faster than the inner edge of the accretion disk can infall to grow the central prestellar core or protostellar core. When a massive disk overlies a diminutive core, the much-greater inertia of the disk may be able to amplify disk disk inhomogeneities by positive feedback with the diminutive core in a manor which gradually shifts the center of gravity outward, away from the core. The outward shift in the center of gravity of the system may foster the formation of a separate Jeans mass Roche sphere to appear in a growing disk inhomogeneity, resulting in asymmetrical disk instability, causing asymmetrical FFF.

Asymmetrical FFF planets are alternatively designated, ‘spin-off planets’, since they form as cores which spin off into a satellite orbit.

Asymmetrical FFF may occur repeatedly as long as the accretion disk is fed at a sufficient rate with gas having excess angular momentum, forming systems with multiple gas/ice giant spin-off planets.

Spin-off planets may initially orbit the system barycenter at a considerable distance from an incipient disk instability, only to gradually spiral in to a much tighter orbit over time as the incipient core gradually gains mass by infalling gas from the surrounding accretion disk.

Mini-Neptunes, with hydrogen-helium atmospheres, appear to be the most prevalent planets in the galaxy, but the high metallicity of mini-Neptunes and larger ice-giant planets with respect to their hydrogen-helium envelopes suggests either an alternative formation mechanism, or a substantial loss of volatile hydrogen-helium during/following asymmetrical FFF. This conundrum suggests a missing underlying mechanism at play or a missing alternative planet formation mechanism. Here’s a possibility: if dark matter turns out to be gravitationally-bound Earth-mass globules of baryonic gas designated ‘paleons’ by Manly Astrophysics, and if gaseous paleons contain moon-mass sedimentary ice and silicate cores, and if paleons sometimes ‘decloak’ to form giant molecular clouds, then giant molecular clouds may be rife with moon-mass, icy, ‘minor rogue planets’ which may sink to the center of prestellar systems to form mini-Neptunes in the early prestellar stage of star formation.

Symmetrical FFF may involve the central core in oscillatory feedback between the competing bilateral lobes of a symmetrical density wave. Negative feedback of a sufficiently-massive core presumably damps down bilateral disk inhomogeneities, but if the disk-to-core mass ratio exceeds a threshold, negative feedback may switch to positive feedback, fostering the materialization of a twin-binary pair of Jeans mass Roche spheres on opposite sides of a massive disk. Symmetrical FFF presumably requires a much more massive disk than asymmetrical FFF, with a correspondingly older, more-massive central core, such that symmetrical FFF may occur with increasing frequency in larger giant star systems. Symmetrical FFF also presumably requires relatively quiescent systems, with insignificant external and internal perturbation, in order to form more stable but more delicate symmetrical density waves, compared to less-stable asymmetrical density waves.

While a system which spins off a gas/ice giant core in an asymmetrical FFF episode may undergo subsequent asymmetrical FFF episodes (if continually supplied by infalling gas with excess angular momentum), one or more gas/ice giant cores presumably inflict sufficient internal perturbation on the system to preclude forming a symmetrical density wave required for symmetrical FFF. This predicts that gas/ice giant planets should not be found in systems which also contain symmetrical FFF progeny. Thus gas/ice giant planets should not be found in systems with twin-binary pairs of stars, which also contain a smaller tertiary companion star or brown dwarf.

In asymmetrical FFF, the flip-flop mechanism is inertial, which automatically shifts the center of gravity of the system from the lower mass core towards the more-massive disk instability. And conservation of angular momentum puts the diminutive core into a barycentric satellite orbit around the incipient disk instability. In symmetrical FFF, the flip-flop process is not automatic, but instead dynamic, requiring an intermediate ‘interplay’ phase, in which the tertiary components (the twin-binary pair and the diminutive core) compete for central dominance of the system. Ultimately, equipartition of kinetic energy causes the diminutive core to ‘evaporate’ into a hierarchical circumbinary orbit around the twin-binary pair, as the twin-binary pair sinks inward to conserve system energy and angular momentum.

L1448 IRS3B (See Figure 1):
     The Class 0 protostar system, L1448 IRS3B, is suggested to have formed by symmetrical FFF. This triple system is composed of a similar-sized binary pair, IRS3B-a & IRS3B-b, with a combined mass of ~ 1 M☉ in a 61 AU binary orbit, and a distant tertiary companion, IRS3B-c, that has a minimum mass of of ~ 0.085 M☉ at a separation of 183 AU from the binary pair. This system may become more hierarchical over time, coming to resemble the Alpha Centauri system at half the mass.
     “Thus we expect the [L1448 IRS3B] orbits to evolve on rapid timescales (with respect to the expected stellar lifetime), especially as the disk dissipates. A natural outcome of this dynamical instability is the formation of a more hierarchical system with a tighter (few AU) inner pair and wider (100s to 1,000s AU) tertiary, consistent with observed triple systems.”
(Tobin et al. 2016)
     The tertiary star, IRS3B-c, is embedded in a spiral arm of the outer disk, where the spiral arm has an estimated mass of 0.3 M☉. The standard model of companion star formation expressed by Tobin et al. suggests that IRS3B-c formed in situ by gravitational instability from the spiral disk, making IRS3B-c younger than IRS3B-a & IRS3B-b, but problematically, circumbinary IRS3B-c is brighter at at 1.3 mm and 8 mm than its much more massive siblings, as is clearly apparent in the image above. Alternatively, the brighter tertiary companion, IRS3B-c, appears to refute the standard model and support the alternative asymmetrical FFF origin, attributing greater brightness to greater age, making the diminutive companion the progenitor of the younger, larger twin-binary pair.

Galactic FFF:

If FFF extends to the galactic scale, then proto spiral galaxies may be relic spin-off cores from repeated instances of galactic asymmetrical FFF during the formation of spiral galaxies by top-down gravitational collapse, as opposed to the bottom-up galaxy formation model proposed by Lambda-CDM.

Globular clusters are suggested to be the former spin-off cores of proto-spiral-galaxies experiencing continual infall of gas with excess angular momentum.

When intergalactic gas with a high specific angular momentum falls onto a spiral disk of a proto-spiral-galaxy with a diminutive core and the spiral disk becomes much more massive than the core, the disk may undergo asymmetrical disk instability, which inertially displaces the former core to satellite status around the incipient disk instability as a proto-globular-cluster.

Time constraints, however, create a serious objection to sequential galactic asymmetrical FFF episodes to form the 150 globular clusters of the Milky Way, which suggests that infalling gas with excess angular momentum may undergo intermediate collapse to spin off globular cluster cores during infall onto the Milky Way spiral disk, thus enabling parallel spin offs of dwarf spirals from infalling gas.

Symmetrical galactic FFF may be a solitary occurrence in the life of a spiral galaxy, turning an unstable proto-spiral-galaxy with excess angular momentum into a stable, mature spiral galaxy. The Large Magellanic Cloud of Milky Way Galaxy and Triangulum galaxy of Andromeda galaxy are suggested to be the former cores of these sister spiral galaxies prior to each galaxy undergoing galactic symmetrical FFF.

Galactic symmetrical FFF may occur when a spiral galaxy with a massive overlying disk compared to a diminutive core reaches sufficient size and maturity that a symmetrical density wave can arise despite continued infall of gas from beyond. As in stellar symmetrical FFF, galactic symmetrical FFF presumably causes a bilateral, spiral disk instability which causes the spiral disk to collapse to form a twin-binary pair of disk-instability objects orbiting a diminutive core. Subsequent interplay with equipartition of energy presumably causes the former core to evaporate out into a circumbinary orbit around the twin-binary pair which spiral in to merge.

Symmetrical galactic FFF presumably forms super-massive black holes (SMBHs) by direct collapse in the centers of the twin-binary disk instability objects which ultimately merged to form Sagittarius A*. And the box/peanut structure in the central bulge of the Milk Way may be the fossil remnant of the twin-binary pair merger.

Hot Jupiter and cold Jupiter spin-off planets:
(See Figure 2)

The distinct bimodal distribution of gas-giant exoplanets into hot Jupiters in low ‘hot’ orbits and ‘cold Jupiters’ in much-higher ‘cold’ orbits suggests a primary mechanism, rather than the secondary mechanism proposed by the standard model of core accretion followed by secondary planetary migration. The bimodal distribution is suggested to be the result of a temporal hiatus in spinning off prestellar/protostellar cores by the asymmetrical FFF mechanism.

Hot Jupiters are defined as gas-giant exoplanets with low (hot) orbits around their host stars, with orbital periods of less than 10 days. Hot Jupiters are suggested to spin off during the prestellar phase of a nascent star system when the core is in freefall, prior to the formation of a first hydrostatic core (FHSC).

By comparison cold Jupiters orbit their host stars at an average distance of about 2 AU. Most cold Jupiters are also suggested to spin off by the asymmetrical FFF mechanism, but cold Jupiters are suggested to spin off during the later protostellar phase of a nascent star system, after the formation of a second hydrostatic core (SHSC). The difference in age between younger prestellar systems spinning off hot Jupiters and older protostellar systems spinning off cold Jupiters may be attributed to larger accretion disks around older protostellar systems, which give older spin-off cores a greater flip-flop boost that translates into higher colder orbits. And the distinct bimodal separation between the two groups is attributed to a temporal hiatus in asymmetrical FFF spin off, during the circa 1000 year duration of the first hydrostatic core (FHSC).

– Hot Jupiters: Spin off by asymmetrical FFF during the early prestellar phase
– Bimodal gap: No spin-off planets formed during the puffy FHSC phase
– Cold Jupiters: Spin off by asymmetrical FFF during the later protostellar phase

The distinct bimodal separation between the two populations is presumably caused by a hiatus in asymmetrical FFF during the circa 1000 year first hydrostatic core (FHSC) phase. The puffiness of the FHSC phase may viscously connect the core with the accretion disk, preventing the necessary positive feedback between the disk and the core from amplifying into full-fledged disk instability. The outer shock front of the FHSC phase extends out to radii on the order of ~ 5–10 AU (Tsitali et al. 2013), which would extend well beyond the inner edge of a protoplanetary accretion disk.

In a prestellar object, the potential energy released by gas undergoing freefall accretion is radiated away, largely by dust and chemical compounds, notably carbon monoxide, maintaining the core temperature at around 10 K. When the core density reaches about 10^13 g cm-3, it becomes optically thick to infrared radiation, causing the internal temperature to rise. This rise in temperature creates a ‘first hydrostatic core’ (FHSC), with compression becoming approximately adiabatic. The FHSC phase is thought to last about 1000 years, by which time the core temperature rises to about 2000 K. At around 2000K, the core undergoes a brief ‘second collapse’, on the order of 0.1 yr, caused by the endothermic dissociation of molecular hydrogen. Following the fleetingly-brief second collapse, the prestellar object transitions to a ‘second hydrostatic core’ (SHSC) phase to become a protostar.

By comparison with a ~ 5–10 AU FHSC diameter, the initial radius of the SHSC is only about 1.3 solar radii (Larson 1969). “The [second hydrostatic] core then begins to lose a significant amount of energy through the combined effects of convective energy transport from the interior and radiative energy losses from the surface layers; as a result the core contracts by a significant factor in radius. This phase of the evolution, represented in Fig. 3 by the section of the curve between approximately 10 and 100 years after the formation of the stellar core, is quite analogous to the pre-main sequence contraction of a star along the ‘Hayashi track’.” (Larson 1969)

Figure 2

Note the distinct bimodal distribution of ‘hot Jupiter’ and ‘cold Jupiter’ exoplanets, with hot Jupiters having periods of less than 10 days and cold Jupiters with semimajor axes centered around 2 AU.

Image credit: Penn State, Eberly College of Science, ASTRO 140



Our solar system’s three twin binary pairs of planets, consisting of Jupiter-Saturn, Uranus-Neptune and Venus-Earth, suggest a third planet formation mechanism, designated ‘trifurcation’. Trifurcation may occur during the interplay phase of symmetrical FFF, during which equipartition causes the more-massive twin-binary-pair components to transfer orbital kinetic energy to the smaller core during hyperbolic-trajectory close encounters. In addition to this orbital energy and angular momentum transfer, equipartition in close orbital encounters is also suggested to transfer rotational energy and angular momentum to the core, causing an increase in the rotational rate, or a ‘spin up’. Scheeres et al. 2000 calculates that the rotation rate of asteroids tends to increase in close encounters of asteroids with larger planemo objects.

As rotational spin up causes a core to begin to exceed its self gravity, the core is distorted into a bar-mode instability which ultimately fails in the form of ‘trifurcation’. In trifurcation, the self gravity of bilaterally-symmetrical bar-mode arms causes the arms to pinch off into new gravitationally-bound Roche spheres, orbiting the diminutive residual core from which they pinched off. So a solitary Roche sphere distorted into a bar-mode instability is transformed into a trinary system composed of
a twin-binary pair of disk-instability objects in Galilean orbits around the residual Roche sphere of the diminutive residual core.

At the instant of trifurcation, the trinary components closely resemble a vastly-smaller version of the trinary components of symmetrical FFF, in that both systems are comprised of a twin binary pair orbiting a much smaller core–a ‘former core’ in the case of symmetrical FFF and a ‘residual core’ in the case of trifurcation. And exactly like symmetrical FFF, the triple components of trifurcation undergo interplay, including the equipartition transfer of orbital and rotational energy and angular momentum transfer from the the larger twin-binary components to the much-smaller residual-core component. And like symmetrical FFF, equipartition of kinetic energy in the interplay between trifurcation trinary components can cause next-generation trifurcation in the residual core. Trifurcation can apparently foster next-generation trifurcation far-more efficiently than symmetrical FFF can foster trifurcation to begin with, noting the relative abundance of triple-star systems with (similar-sized) twin binary pairs having much-smaller companions (such as Alpha Centauri and L1448 IRS3B), compared to the often observed uniqueness of our solar system, with its suggested four generations of trifurcation:

In our own solar system, symmetrical FFF lead to 4 generations of trifurcation, which created successively-smaller twin binary pairs, like Russian nesting dolls:
1) 1st-gen trifurcation of Brown Dwarf = binary-Companion + SUPER-Jupiter
2) 2nd-gen trifurcation of SUPER-Jupiter = Jupiter-Saturn + SUPER-Neptune
3) 3rd-gen trifurcation of SUPER-Neptune = Uranus-Neptune + SUPER-Earth
4) 4th-gen trifurcation of SUPER-Earth = Venus-Earth + Mercury(?)

Trifurcation is essentially a fractionation process which pinches off the more volatile components into the bar-mode arms, compared to the denser elements which are left behind in the residual core. Thus in the trifurcation of the SUPER-Jupiter residual core, more of the volatile hydrogen and helium was pinched off in the Jupiter-Saturn twin-binary pair, leaving behind a higher rocky-iron percentage in the SUPER-Neptune residual core. Thus each succeeding generation of twin-binary components is composed of higher-density elements, winding up with residual-core Mercury(?) having a proportionately-larger iron-nickel core than its twin-binary siblings, Venus and Earth. Alterntively, only the Venus-Earth binary pair sunk into the inner solar system, while the residual core evaporated out of the trinary prior to sinking inward by binary mass segretation, in which case the residual core was lost from the planetary realm and Mercury is a hybrid-accretion asteroid formed from the secondary debris disk from the binary spiral-in merger of former binary-Sun at 4,567 Ma.

Trifurcation makes makes predictions (unlike pebble/core accretion), such as multiple generations of twin binary pairs in size regression with density progression.

The dynamics in multiple trifurcation generations may become rather chaotic, with orbital close encounters between between twin binary pairs and their residual core tending to make the twin binary pairs spiral in toward ultimate merger, while orbital close encounters of twin binary pairs with their parent twin binary components will tend to make them spiral out toward separation. In our own solar system, the twin-binary symmetrical FFF components are suggested to have spiraled in to for former binary-Sun, which ultimately merge at 4,567 Ma, and the twin-binary super-Jupiter-mass components are suggested to have spiraled in to form former binary-Companion, which ultimately merged 4 billion years later at 635 Ma, while the 3 planetary twin-binary pairs spiraled out and separated to form 6 planets.

The bar-mode instability pathway of trifurcation predicts that in the trifurcation of an internally-differentiated object, the residual core should acquire a higher density than its much-larger twin binary pair siblings. I.e.., in the trifurcation of a rocky-iron SUPER-Earth with an internally-differentiated iron-nickel core, lower density crust and mantle material should be preferentially centrifugally slung into the bar-mode arms that pinch off to form the twin-binary pair, while a larger proportion of the denser core material should remain in the residual core. And indeed Mercury(?) has a proportionately-larger iron-nickel core than Earth, although Earth just barely edges out Mercury in density due to the compression of its much-higher gravity. Third-generation trifurcation-product Uranus also has lower density than second-generation trifurcation-product Jupiter, presumably for the same reason, with Uranus presumably having a proportionately-larger iron-nickel core than Jupiter. So each generation of twin-binary pairs should be composed of material with a higher density than its proceeding generation.

FFF and trifurcation are suggested catastrophic mechanisms for increasing system entropy by projecting mass inward. While trifurcation reduces subsystem entropy by trifurcating a residual core, this decrease in entropy must be more than offset by an increase in entropy of the larger system, generally by causing a larger twin binary pair to spiral inward.


Pinch-off moons:
     Since the iron core of Earth’s Moon is disproportionately small compared to Earth’s iron core, the Moon is apparently not the residual core of twin-binary Venus-Earth nor the residual core of a former twin-binary-Earth, whose components subsequently spiraled in to merge and leave the residual core as its moon, as is suggested to have happened in the Jupiter system. The Dynamical Bar-mode Instability simulation offers a suggestion for a volatile-enriched origin for Earth’s Moon in the form of self-gravity pinch off of the trailing tail associated with the Earthly bar-mode arm. Similarly, the trailing tail associated with the twin Venusian bar-mode arm presumably also pinched off to form a former (retrograde) moon around Venus. This same mechanism could similarly explain two other oversized ‘pinch-off moons’ of the giant planets, namely, Titan at Saturn and Triton at Neptune. The mass ratio of Earth’s pinch-off Moon to Earth is much higher than is Titan and Triton are to their respective planets, but pinch-off moons in gaseous systems may lose the vast majority of their original mass by volatile outgassing, due to insufficient gravity to retain hydrogen and helium. Two of the pinch-off moons are prograde, namely, Earth’s Moon, and two are/were retrograde, namely Triton and Venus’ suggested moon which presumably spiraled in to merge at 541 Ma.
     From the 4 suggested examples of trifurcation planets with pinch-off moons in our solar system, pinch-off moons appear to have an equal affinity for prograde and retrograde orbits, for an unknown reason.

(Virtual) trifurcation moons:
     The four oversized Galilean moons of Jupiter in two twin-binary pairs with a generational density progression suggests two generations of trifurcation, but missing is missing a still-higher-density residual-core moon. Moony trifurcation points to a former binary-Jupiter, suggesting that pinched-off bar-mode arms with excess angular momentum may be induced to trifurcate, if only in a virtual manor, which allows their twin-binary planetary components to spiral back in and merge.
     The residual core of the Jupiter bar-mode-arm trifurcation apparently underwent two additional moony trifurcations, forming the first-moony-generation trifurcation twin-binary pair, Ganymede (1.936 g/cm3) and Callisto (1.8344 g/cm3), and second-moony-generation trifurcation twin-binary pair, Io (3.528 g/cm3) and Europa (3.013 g/cm3), with a missing still-higher-density residual core of Io and Europa.
     Interestingly, the D/H (deuterium/hydrogen) ratio of Saturn is lower than that of Jupiter by a factor of 0.71 + 0.22% – 0.15, contrary to standard-model predictions of a higher ratio (Pierel et al. 2017). But if plasma overflowed Jupiter’s Roche sphere in the binary spiral-in merger, then hydrogen fractionation would be the expected outcome, with the giant 2 to 1 mass difference between deuterium and protium.
     Additionally, enstatite chondrites, which lie on the 3-oxygen-isotope Brown Dwarf-reservoir terrestrial fractionation line, could be core material from polar jets squirting from the merging iron-nickel cores of former binary-Jupiter. Dating evidence of enstatite chondrite formation overlapping with a thermal event in the asteroid belt that melted water ice in CI chondrites and deposited dolomite provides corroboration for a Jovian cataclysm: 29I–129Xe age of enstatite chondrites (4,562.3 +/- 0.4) (Gilmour et al. 2009), and 53Mn–53Cr age of dolomites dated at 4,563.8–4,562.5) (Fujiya et al. 2013).

Hybrid accretion moons:
     Hybrid accretion moons presumably form around solitary giant planets, and Jupiter’s suggested former binary status may have precluded hybrid-accretion moon formation until after its binary-merger around 4,562 Ma, forming particularly-diminutive hybrid-accretion moons inside the orbits of the Galilean moons from the binary-Jupiter-merger debris. Even the presence of a solitary pinch off moon, like Titan at Saturn, appears to constrain the size of hybrid accretion moons, where Saturn’s suggested hybrid accretion moons are the same size as Uranus’ moons’, around a planet with only 15% of its mass.

Mars and Oort cloud comets:

If an unknown process produced extensive
aqueous alteration in the material that formed
cometary meteorites, then CI chondrites are the
meteorites most likely to be cometary, since they
match most of the other characteristics, including
chemical composition, strength, relative abundance,
and abundance of interstellar grains.
(Campins & Swindle 1998)

Mars and the Oort cloud comets may be the original denizens of the Brown Dwarf system, with Oort cloud comets having formed by streaming instability, either against the magnetic corotation radius of the Brown Dwarf itself, or against the outer resonances of Mars or other former hybrid-accretion planets of a former potential cascade of hybrid-accretion planets.

This origin for Mars (and a trifurcation origin for the other planets) would make Mars the oldest planet in the solar system.

The leftover planetesimals from the hybrid-accretion of Mars around Brown Dwarf have been scattered into the Oort cloud or out of the solar system altogether by the chaotic upheaval of symmetrical FFF followed by 4 generations of trifurcation of Brown Dwarf. And any remaining Brown Dwarf planetesimals were presumably vaporized by the binary-Sun-merger luminous red nova at 4,567 Ma, but a few may have been reintroduced in the form of CI chondrites.

The presumed Brown Dwarf protoplanetary disk former origin of CI chondrites suggests a close affinity with Mars, and indeed CI chondrites lie very near the Martian fractionation line. CI chondrites have a ∆17O (‰) of +0.41 (Burbine & O’Brien 2004), compared to the Martian fractionation line of +0.321 ± 0.013‰ (Franchi et al. 1999). If the ∆17O difference between Mars meteorites and CI chondrites is the result of KBO contamination during the late heavy bombardment, when Mars was presumably peppered with hot classical KBO population which lie on the TFL (with a ∆17O of 0.0‰), then the Martian surface magma sampled by Martian meteorites is contaminated with 22% KBO input.

Venusian cataclysm:

    Venus is suggested to be Earth’s twin from the fourth-generation SUPER-Earth trifurcation. Venus may be Earth’s twin in another way as well, if Venus formerly had a pinch-off moon, presumably similar to Earth’s moon in size and composition. Venus’ moon, however, was presumably in a doomed retrograde orbit like Triton around Neptune. Triton’s decaying orbit will spiral in to merge with Neptune in about 3.6 billion years, while Venus’ former pinch-off moon may have already done so in a ‘Venusian cataclysm’, presumably 541 Myr. A retrograde-spiral-in-moony-merger Venusian cataclysm would have completely resurfaced the planet. Indeed, the nearly-random spatial distribution of Venus’ low crater count, suggests 300-500 Myr resurfacing (Price & Suppe 1994), or 300-1000 Myr resurfacing (McKinnon et al. 1997).
    Pancake-shaped coronae on Venus, caused by mantle upwelling, may be evidence of a protracted digestion of its former moon, and Venus’s sulfurous atmosphere is presumably sustained by continued volcanic outgassing. “Sulphur dioxide is a million times more abundant in the atmosphere of Venus than that of Earth, possibly as a result of volcanism on Venus within the past billion years.” (Marcq et al 2013)
    The sudden appearance of all modern phyla on Earth in the Cambrian Explosion is consistent with catastrophic merger-Explosion contamination by our closest planetary neighbor. This would make Venus the cradle of complex life in the inner solar system, which it relayed to Earth in its 100% extinction event cataclysm. And presumably Venus contaminated the entire inner solar system with Venusian lifeforms, to a greater or lesser degree.
    For Venus’ retrograde orbit to be the outcome of a retrograde moon merger requires that the moon’s retrograde orbit had more angular momentum than Venus’ former prograde rotation. Part of the prograde-to-retrograde rotation transition (angular momentum transfer) would have occurred during 4 billion years of Venus-moon tidal interactions, and part of the transfer would have been cataclysmic, at impact.
    Since an object in a circular orbit has only half the potential and kinetic energy necessary to achieve escape velocity, presumably very little solid material from either the former moon and planetary surface escaped the planet. Volatile loss, however, may have been sufficient to significantly reduce the solar incidence on Earth, which is suggested to have caused the Baykonurian glaciation at the Proterozoic–Phanerozoic boundary.
    Finally, the heat budget of Venus could be negative if Venus is still cooling off from the merger.

Protoplanetary disk and 4 debris ring/disks condense 4 planetesimal populations:

– Brown Dwarf protoplanetary disk (>> 4,567 Ma) — Mars, Oort cloud comets, CI chondrites(?)
– Primary debris disk (inferred) (> 4,567 Ma) — old hot-classical KBOs
– Secondary debris disk (4,567 Ma) — asteroids, chondrites
– Tertiary debris disk (inferred) (635 Ma) — young cold-classical KBOs, Ceres(?)

Brown Dwarf protoplanetary disk, protoplanetary reservoir, >4,567 Ma:
     Former Brown Dwarf is suggested to have condensed trillions of kilometer-scale planetesimals from its protoplanetary disk by streaming instability, many of which are suggested to have accreted to form Mars and possibly other (missing) planets in possible former cascade of hybrid-accretion planets around Brown Dwarf. The vast majority of the leftover Brown Dwarf planetesimals were scattered into the Oort cloud or out of the solar system altogether during the upheaval of symmetrical FFF followed by 4 generations of trifurcation. Any remaining kilometer-scale planetesimals in the inner solar system were presumably vaporized by the binary-Sun-merger luminous red nova at 4,567 Ma. Later, a few Brown Dwarf planetesimals may have been reintroduced into the inner solar system in the form of CI chondrites.

Primary debris disk, homogenized Brown Dwarf reservoir, >4,567 Ma:
Rotational fragmentation of a core might aptly be called quadrification rather than trifurcation in a mass-balance accounting which includes evaporated and centrifugally spun-off dust and gas during trifurcation. In other words, trifurcation may be an exceedingly messy and inefficient process, creating a massive ‘primary debris disk’ around former binary-Sun, arising from the 4 trifurcation generations. This homogenized Brown-Dwarf-reservoir primary debris disk would have had a 3-oxygen-isotope Brown Dwarf fractionation line, which we know as the ‘terrestrial fractionation line’ (TFL).
¶    The extreme mixing inherent in the violent act of trifurcation may largely preclude light-isotope fractionation into the evaporated primary debris disk. As the gas and dust cools and settles, however, reverse fractionation will cause the heaviest isotopes condense and chemically react first and preferentially undergo gravitational collapse by streaming instability, such that KBOs condensed from the primary debris disk will inherit a heavy isotopic signature. So somewhat counterintuitively, trifurcation evaporation followed by streaming instability may imbue hot classical KBOs condensed from the primary debris disk with a heavy isotopic signature compared to the 4 trifurcation generations from which they sprung. And the elevated 87Sr/86Sr ratio of Earth’s continental crust compared to its mantle is in part suggested to result from hot-classical KBO impacts with gneissic cores having a heavy isotopic signature compared to bulk Earth.
¶    Additionally, trifurcation of internally-differentiated objects with iron-nickel cores would spin off and evaporate siderophile-depleted fragmentation-debris dust and gas, which was depleted in iron, nickel, and the platinum group elements, including iridium.
¶    The primary debris disk is suggested to have condensed a siderophile-depleted (hot-classical) KBO population against Neptune’s outer resonances by streaming instability, with a heavy-isotope and TFL signature. The rhythmic pulse of a binary-Sun likely precluded the condensation of inner solar system asteroids from the primary debris disk, but small inner solar system asteroids might have been vaporized anyway in the binary-Sun-merger luminous red nova at 4,567 Ma.
¶    Thus, the lack of iridium in extinction-event boundary sediments may not preclude an extinction event caused by a hot-classical KBO impact condensed from the primary debris disk.

Secondary debris disk, binary-Sun-merger reservoir, 4,567 Ma:
     Binary-Sun components spiraled in to merge at 4,567 Ma in a luminous red nova, which elevated the core-merger temperatures to the point of fusing r-process radionuclides, predominantly 26Al and 60Fe. The solar-merger debris was also variably enriched in the helium-burning stable isotopes, 20 Ne, 16O and 12C. Calcium-aluminum inclusions (CAIs) with canonical 26Al concentrations presumably condensed from polar jets squirting from the merging cores of the binary-stellar components. Chondrules formed over a duration of 3 million years, perhaps formed by super-intense solar flares melting dust motes into glassy chondrules during a 3 million year flare-star phase of the newly-merged Sun.
     The luminous red nova imparted little angular momentum to the nova debris, which apparently confined the secondary debris disk to the inner solar system, precluding the condensation of solar-merger KBOs beyond Neptune. Asteroids presumably condensed quickly against the magnetic corotation radius inside the orbit of Mercury, while the short-half-life radionuclides were still hot and could melt and internally differentiate the early asteroids. Undifferentiated chondrites likely condensed in situ against Jupiter’s strongest inner resonances over the next 5 million years, after the short-lived radionuclides had largely decayed away.
     If the planet Mercury is not a 4th-generation-trifurcation residual core, then Mercury is likely to be a hybrid-accretion planet accreted from refractory asteroids condensed against the Sun’s greatly-expanded solar-merger magnetic corotation radius.

Tertiary debris disk, binary-Companion-merger reservoir, 635 Ma:
     The super-Jupiter components of former binary-Companion presumably spiraled in to merge at 635 Ma after emitting a powerful super-Jupiter wind during the circa 85 million years of the Cryogenian Period in the contact binary phase of the binary spiral-in merger. The super-Jupiter wind presumably fogged the inner solar system, reducing the solar radiation incident on Earth sufficiently to freeze the oceans in a global Snowball Earth. An asymmetrical merger explosion gave the newly-merged Companion escape velocity from the Sun. While the binary-Companion merger at 635 Ma was considerably less energetic than the binary-Sun merger at 4,567 Ma, the binary-Companion merger debris inherited the angular momentum of former binary-Companion, which was more than sufficient to create a tertiary debris disk beyond Neptune. The tertiary debris disk apparently condensed a young population of cold classical KBOs in situ, principally against Neptunes outer 2:3 resonance.
     The young, cold-classical KBO population should lie on the TFL like the old hot-classical KBO population, but the young population will have a siderophile signature, since the binary-Companion-merger debris would include siderophile core material, although perhaps not in direct proportion to the bulk Companion composition, so the young cold-classical KBO population should be at least considerably-less siderophile depleted (compared to CI chondrites) than the old hot-classical population of the primary debris disk.
     The tertiary debris disk should inherit the Brown Dwarf D/H (deuterium/hydrogen) ratio, assuming that both 4 billion year old binary-Companion components were super-Jupiters, below the 13 Jupiter mass lower limit for deuterium burning. If one component were a brown dwarf and one a super-Jupiter, then the tertiary debris disk should inherit half the Brown Dwarf D/H ratio.
     Ceres is devoid of large impact craters >~280 km, whereas collisional models predict 10–14 craters >400 km (Marchi et al. 2016). This suggests widespread resurfacing of the minor planet, or alternatively, that Ceres missed out on the late heavy bombardment, suggesting it may have condensed from the tertiary debris disk. And the water-ice layer in Ceres mantle might be consistent with a temporary inward migration of the frost line due to sunlight shielding by a tertiary debris disk in the asteroid belt.

Estimating a minimum mass for the former Brown Dwarf and former binary-Companion:

Mercury: m[M] = .055 m[E]
Venus: m[V] = .815 m[E]
Earth: m[E] = 1 m[E]
Uranus: m[U] = 14.54 m[E]
Neptune: m[N] = 17.15 m[E]
Saturn: m[S] = 95.16 m[E]
Jupiter: m[J] = 317.8 m[E]

SUPER-Earth: m[V] + m[E] + m[M] = 1.87 m[E]
SUPER-Neptune: m[U] + m[N] + SUPER-Earth = 14.54 + 17.15 + 1.87 = 33.56 m[E]
SUPER-Jupiter: m[S] + m[J] + SUPER-Neptune = 95.16 + 317.8 + 33.56 = 446.52 m[E]
Brown Dwarf: ?

Residual-/original-core mass progression:
SUPER-Earth / Mercury = 1.87 / .055 = 34
SUPER-Neptune / SUPER-Earth = 33.56 / 1.87 = 17.9
SUPER-Jupiter / SUPER-Earth = 446.52 / 33.56 = 13.3
Brown Dwarf / SUPER-Jupiter = m[BD] / 446.52 = say 10(?)
therefore m[BD] = 4465.2 m[E] / ( 317.8 m[E] / 1 m[J] ) = 14 m[J]

binary-Companion = m[BD] – SUPER-Jupiter = (4465.2 – 446.52)/(317.8/1) = 12.6 m[J]

The Brown Dwarf original core of the solar system was likely a low-mass brown dwarf of circa 14 Jupiter masses at the time of symmetrical FFF, and binary-Companion was circa 12.6 Jupiter masses, so each twin-binary component of former binary-Companion likely had about mass of about 6 Jupiters, which would have been safely below the 13 Jupiter mass lower limit of a brown dwarf where deuterium fusion is calculated to begin.

Since deuterium burning in brown dwarfs can last for 100 million years, the likely few million years of the Brown Dwarf existence prior to its trifurcation during symmetrical FFF likely only burned a few percent of its total deuterium. And the binary-Companion components were likely far enough below the 13 Jupiter mass threshold for deuterium burning to have preserved all their deuterium, such that the tertiary debris disk was likely not deuterium depleted compared to Saturn (where Jupiter may have become fractionated during the binary-Jupiter merger, due to loss of volatile isotopes from its Roche sphere).

Note, this is a minimum mass estimation assuming no volatile loss during trifurcation. A more realistic estimate would increase masses by a significant but unknown percentage.

Solar system summary and evolution:

     A massive accretion disk around a diminutive brown-dwarf-sized core underwent symmetrical FFF, condensing a twin pair of disk-instability objects. The resulting system, comprised of a massive twin binary pair of prestellar objects orbiting a diminutive Brown Dwarf, was dynamically unstable, resulting in a period of orbital interplay which evaporated the central core into a circumbinary orbit around the twin binary pair which became binary-Sun. But orbital interplay caused Brown Dwarf to spin up and undergo 4 generations of trifurcation, forming a binary-Companion, along with 6 or 7 trifurcated planets. Perturbations from binary-Companion caused the solar components to spiral in and merge at 4,567 Ma in a luminous red nova which created the secondary debris disk from which asteroids and chondrites condensed by streaming instability, and Mercury may have formed by hybrid accretion.

Brown Dwarf trifurcations:
     Our solar system at one time is suggested to have consisted of 5 twin binary pairs, formed by symmetrical FFF, followed by four generations of trifurcation;
1) Symmetrical FFF — binary-Sun + Brown Dwarf (original core)
2) First-generation trifurcation — binary-Companion + SUPER-Jupiter (residual core)
3) Second-generation trifurcation — Jupiter-Saturn + SUPER-Neptune (residual core)
4) Third-generation trifurcation — Uranus-Neptune + SUPER-Earth (residual core)
5) Fourth-generation trifurcation — Venus-Earth + Mercury(?) (residual core)
     The orbital close encounters of Brown Dwarf with the twin binary pair of disk instability objects caused Brown Dwarf to spin up and ultimately trifurcate, forming a trinary orbital system composed of a twin-binary pair of super-Jupiters orbiting a much-smaller SUPER-Jupiter residual core (where the term ‘SUPER-Jupiter’ refers not to size but to its status as progenitor of Jupiter & Saturn in the next-generation trifurcation). The much-greater overlying mass of the twin-binary super-Jupiters constituted an unstable system, resulting in dynamic interplay in the newly-minted trinary system, causing a second-generation trifurcation, forming a smaller trinary system composed a twin binary pair of gas giants (Jupiter and Saturn) orbiting a diminutive SUPER-Neptune core. The third-generation trifurcation formed Uranus and Neptune with a much-smaller SUPER-Earth core, and likewise, the forth-generation trifurcation formed Venus & Earth, with a much-smaller residual core in the form of Mercury(?). Alternatively, Mercury could be a hybrid-accretion asteroid from the binary-Sun merger secondary debris disk.

     The super-earth-mass twin-binary components of binary-Companion did not separate like the binary components of the three younger trifurcation generations, creating a quaternary system, composed of (close)-binary-Sun and (close)-binary-Companion in a wide binary orbit around the solar system barycenter, with a Sun-Companion separation of hundreds of AU.
     Perturbations from the rest of the solar system caused binary-Companion components to spiral in over time, and as the super-Jupiter components spiraled in, the binary super-Jupiter orbital energy was translated into increasing the Sun-Companion eccentricity over time. This steady increase in the Sun-Companion eccentricity over time caused tidal perturbation to progress through the Kuiper belt, causing the late heavy bombardment of the inner solar system by KBO impacts. Ultimately, binary-Companion’s binary components merged at 635 Ma, giving the newly-merged Companion escape velocity from the Sun. And the binary-Companion-merger tertiary debris disk condensed a young population of cold-classical KBOs against Neptune’s outer 2:3 resonance.

     Mercury is the suggested residual core of the fourth-generation trifurcation and a sibling to the much-larger twin-binary pair, Venus-Earth. Trifurcation predicts siderophile enrichment on the TFL, while a hybrid-accretion origin predicts a refractory enrichment with 16O enrichment, but a large iron-nickel core is compatible with both alternatives.
     Alternatively, Mercury could be a hybrid-accretion planet, formed from core accretion of secondary-debris-disk asteroids condensed against the super-extended magnetic corotation radius of the newly-merged Sun at 4,567 Ma. But even a trifurcation origin could have significant subsequent contamination by asteroid impacts from the secondary debris disk if Mercury is partly or largely responsible for perturbing the asteroid population out of their magnetic corotation radius formation orbits.

     Venus is suggested to be the twin of Earth from the fourth-generation SUPER-Earth trifurcation. Venus may be an Earth twin in another way, if Venus formerly had a pinch-off moon, similar to Earth’s moon in composition and scale, but in a doomed retrograde orbit, like Triton. Triton will one day spiral in to merge with Neptune while Venus’ pinch-off moon may have already done so in the ‘Venusian cataclysm’, causing the recent resurfacing of the planet, with resurfacing presumably occurring between 300-500 Ma (Price & Suppe 1994). The actual cataclysm merger date is presumed to be 541 Ma.
     The numerous pancake-shaped coronae on Venus may result from a messy digestion of the moon that still occasionally spills out in surface eruptions, and the oppressive sulfurous atmosphere is presumably also a direct result of continued cataclysm outgassing, 541 million years on. “Sulphur dioxide is a million times more abundant in the atmosphere of Venus than that of Earth, possibly as a result of volcanism on Venus within the past billion years.” (Marcq et al 2013)
     The sudden appearance of all modern lifeform phyla on Earth in the Cambrian Explosion supports merger-explosion contamination by definition, making Venus the cradle of complex life in the inner solar system which it relayed to Earth (et al?) in its 100% extinction event cataclysm.
     Venus’ present retrograde orbit suggests that the former retrograde moon’s orbit had slightly more angular momentum than Venus’ former prograde rotation.
     Finally, the heat budget of Venus could be negative if Venus is still cooling off from the merger.

     Earth is suggested to be the twin of Venus from the fourth-generation SUPER-Earth trifurcation, in which Earth is suggested to have acquired a pinch-off moon, from the secondary pinch-off the trailing tail of the bar-mode arm which formed Earth in the primary bar-mode-arm pinch off.
     Multiple impacts from a 541 Ma quaternary debris ring may have eroded the continental tectonic plates to cause the Great Unconformity, and Venus may have contaminated Earth with higher lifeforms in the Cambrian Explosion in the 100%-extinction-event Venusian cataclysm.
     The continental tectonic plates on Earth are suggested to be cored by extraterrestrial, lithified, metamorphosed, authigenic KBO-core gneissic sediments delivered by icy KBO impacts, largely during the late heavy bombardment, although surviving basement rock may largely derive from the long tail following the most-intensive impact period of 4.1–3.8 Ga. (See section, AQUEOUS DIFFERENTIATION OF KUIPER BELT OBJECTS (KBOs))

Mars, Oort cloud comets and CI chondrites:
     Mars is suggested to be a hybrid-accretion formed around former Brown Dwarf from its protoplanetary disk, whose leftover planetesimals were scattered into the Oort cloud or out of the solar system altogether by the upheaval of symmetrical FFF and 4 generations of trifurcation. CI chondrites, which do not contain binary-solar-merger chondrules, may sample this Brown Dwarf protoplanetary reservoir.

     Jupiter is suggested to be a twin of Saturn from the second-generation SUPER-Jupiter trifurcation. Rather than condensing into a solitary object, the Jupiter bar-mode arm apparently spun up and trifurcated to form binary-Jupiter with a residual moony core. The residual moony core apparently underwent two additional generations of trifurcation to form 1st-gen. Ganymede and Callisto, and 2nd-gen. Io and Europa, with a missing residual core to Io and Europa.
     Several other pieces of evidence point to a former binary-Jupiter and its spiral-in merger around 4,562 Ma. Dating of CI chondrites, which lie on the TFL, appears to coincide with a thermal event in the asteroid belt that melted water ice in CI chondrites which deposited dolomites in this age range. Enstatite chondrite material, with a particularly-low oxygen fugacity, is suggested to have squirted from the merging iron-nickel cores by way of polar jets. Additionally, Jupiter has an elevated D/H (deuterium/hydrogen) ratio compared to Saturn, which suggests fractionation of Jupiter’s hydrogen, which might have occurred if Jupiter overfilled its Roche sphere in the binary-merger explosion. (see subsection, Moons: for citations)

     Saturn, is suggested to be a twin of Jupiter from the second-generation SUPER-Jupiter trifurcation. Saturn apparently acquired a pinch-off moon (Titan) like Earth, but apparently did not trifurcate into a binary pair like Jupiter. Saturn also appears to have a cascade of smaller hybrid-accretion moons, namely, Mimas, Enceladus, Tethys, Dione, Rhea, and likely Iapetus, which likely condensed from the trifurcation debris with a TFL signature.

     Uranus is suggested to be a twin of Neptune from the third-generation SUPER-Neptune trifurcation. Uranus either did not acquire a pinch-off moon or subsequently lost it. The absence of a pinch-off moon may have fostered a denser trifurcation-debris accretion disk, which formed a particularly-robust cascade of hybrid-accretion moons. Uranus hybrid-accretion moons are about the same size as Saturn’s suggested hybrid-accretion moons, but around a planet less than 1/6 the size. Uranus’ sideways tilt is unexplained, but hardly surprising in a solar system which underwent 4 generations of trifurcation.

     Neptune is suggested to be a twin of Uranus from the third-generation SUPER-Neptune trifurcation. Neptune apparently has a pinch-off moon, Triton, albeit in a retrograde orbit around the planet. Neptune’s smaller moons do not represent a neat cascade of hybrid-accretion moons.

Asteroids and chondrites:
     Asteroids and chondrites are suggested to have condensed from binary-Sun merger at 4.567 Ma from the secondary debris disk. The binary-solar-merger luminous red nova may have briefly engulfed the solar system out to the Kuiper belt. The low angular momentum content of the luminous red nova apparently precluded the formation of a distant debris disk beyond Neptune, but apparently formed an inner solar system debris disk, which may have condensed asteroids with ‘hot’ radionuclides against the Sun’s magnetic corotation radius, near the orbit of Mercury. Chondrites formed over the next 5 million years, likely condensing in situ by streaming instability against Jupiter’s strongest inner resonances.
     Mercury may or may not be a hybrid accretion asteroid formed in situ beyond the Suns’ recent-merger-expanded magnetic corotation radius of the Sun.

Hot classical KBOs:
     Hot classical KBOs in are suggested to have condensed from a primary debris disk, shortly prior to 4,567 Ma, which was largely composed of trifurcation debris from the Brown Dwarf reservoir. Hot-classical KBOs condensed from the primary debris disk should lie on the TFL, with a siderophile-depleted composition.
     The high-inclination, high-eccentricity ‘hot’ classical KBOs were presumably scattered into their hot (perturbed) orbits by Sun-Companion tidal effects. The late heavy bombardment is suggested to have been caused by the ‘tidal inflection point’ (low tide) moving through the cubewanos from about 4.1–3.8 Ga, driven outward by the spiral in of the binary-Companion components which caused an exponential increase in the Sun-Companion eccentricity over time.
     Orbital perturbation by the tidal inflection point in Precambrian Era and by Neptune in the Phanerozoic Eon is suggested to cause internal ‘aqueous differentiation’ in KBOs, which precipitates authigenic gneissic sediments to form gneiss-dome composition cores, with quartzite, marble and schist mantling rock, having a siderophile-depleted TFL signature. Lithified, metamorphosed KBO cores are suggested to constitute a sizable component of the continental tectonic plates. Neptune is the nemesis of the Kuiper belt in the present Phanerozoic Eon, as KBOs continue to adjust to the loss of former binary-Companion and are intermittently perturbed inward by the intermediate pathway of becoming centaur minor planets.

Cold classical KBOs:
     Cold classical KBOs are suggested to have condensed in situ from the tertiary debris disk formed from spiral-in merger debris of former binary-Companion at 635 Ma. The low-inclination, low-eccentricity ‘cold’ orbits are presumably the result of in situ condensation without subsequent perturbation.
     Cold classical KBOs are often found in binary systems composed of similar-size and similar-color (twin) binary pairs, unlike hot classical KBOs which are rarely found in binary pairs. Hot classical KBOs were presumably also formed in binary pairs before being disrupted by Sun-Companion perturbation. Additionally, cold classical KBOs tend to be red in coloration, while hot classical KBOs are more heterogeneous, tending toward being bluish.
     Presumably few if any cold classical KBOs have been perturbed by Neptune into the inner solar system because of the stability of their low-inclination low-eccentricity orbits, although, End Cretaceous sediments surrounding the 66 Ma Chicxulub crater have been found to contain elevated iridium concentrations.

Pluto system:
     The Pluto system presumably formed in situ by streaming instability against Neptune’s strongest outer 2:3 resonance, possibly by way of symmetrical FFF, followed by several generations of trifurcation.
     The geologically active surface of Pluto, revealed in 2015 by the New Horizons spacecraft, might point to its membership in the young KBO population, condensed from the 635 Ma tertiary debris disk.
     The Pluto system presumably formed by symmetrical FFF, condensing a twin-binary pair, Pluto and Charon, from a debris disk, followed by 2 or more generations of trifurcation of the former core. The enormous size difference between the smaller twin-binary disk component, Charon, and the larger twin binary moons trifurcated from the former core, suggests the absence of a higher-generation trifurcation pair, directly analogous to the suggested solar-system absence of a former binary-Companion. And the loss mechanism may be the same: a former first-generation-trifurcation twin-binary pair of the former core may have spiraled in to merge in an asymmetrical merger explosion that gave the newly-merged moon escape velocity from the Pluto system.
     Assuming a missing first-generation twin-binary pair, the second-generation trifurcation of the original core may have formed the twin-binary pair Nix (50 x 35 x 33 km) & Hydra (65 x 45 x 25 km) + a residual core which underwent a third-generation trifurcation to form the twin-binary pair Styx (16 x 9 x 8) & Kerberos (19 x 10 x 9 km) + a residual core or forth-generation trifurcation whose components may be too small to see with the Hubble Wide Field Camera that discovered Styx & Kerberos. The densities of the smaller moons are unknown so a density progression can not be established, although objects too small to have undergone internal differentiation would not be expected to exhibit a density progression.

Detached Objects:
     Detached objects, also known as extended scattered disc objects (E-SDO), distant detached objects (DDO) or scattered-extended objects are a class of minor planets belonging to trans-Neptunian objects (TNOs), with perihelia sufficiently distant from Neptune to be considered detached from planetary influence.
     The relative aphelia alignment of detached objects, such as Sedna and 2012 VP-113, is suggested here to be a fossil alignment of KBO aphelia with the former Sun-Companion axis, where shorter period KBOs have randomized their aphelia orientations since the loss of binary-Companion at 635 Ma.

Flip-flop perturbation of KBOs:

‘Flip-flop perturbation’ is a suggested orbital perturbation mechanism in wide-binary systems, caused by the low-tide transition between orbital aphelia (of objects orbiting the larger binary component) gravitationally attracted toward a companion star on one side of the low-tide transition, the ‘tidal inflection point’ (TIP), and orbital aphelia centrifugally slung 180° away from the companion star by the orbit of the larger star around the binary barycenter. Sun-Companion TIP, corresponds to the low tide transition between the two lunar high tides on Earth.

The semimajor axes of all heliocentric orbits were aligned with the Sun-Companion axis prior to 635 Ma, where generally, the orbits closer to the Sun than the solar system barycenter (SSB) had their aphelia centrifugally slung 180°away from binary-Companion, while orbits beyond the SSB had their aphelia gravitationally attracted toward binary-Companion, but the Sun-Companion system was an eccentric wide-binary system, with growing eccentricity over time, which greatly complicates the picture.

Secular perturbation of our former binary-Companion’s super-Jupiter components caused them to spiral in for 4 billion years, translating close-binary (super-Jupiter–super-Jupiter) potential energy into wide-binary (Sun-Companion) potential energy. This energy transfer increased the Sun-Companion eccentricity over time around the solar system barycenter (SSB), progressively increasing the maximum Sun-Companion separation at apoapsis, presumably at an exponential rate over time. By Galilean relativity with respect to the Sun, the SSB could be said to have spiraled out through the Kuiper belt at an exponential rate for 4 billion years, fueled by the orbital potential energy of binary-Companion’s super-Jupiter components.

(Negative) gravitational binding energy is an inverse square function of distance, such that a circular orbit of 100 times the radius will have 1/10,000 the binding energy. Angular momentum, by comparison, is an inverse square root function of the radius of a circular orbit, such that an orbit of 100 times the radius will have only 10 times the angular momentum. Since an inverse square function is much steeper than a square root function, the super-Jupiter components of binary-Companion could dramatically reduce the wide-binary Sun-Companion binding energy of the system without having much affect on angular momentum. Periapsis of an orbit is a good measure of its relative angular momentum, while apoapsis is a good measure of its relative binding energy, so the 4 billion year spiral-in of the binary components of binary-Companion effectively increased the Sun-Companion apoapsis at an exponential rate, causing the SSB apoapsis to effectively spiral out through the Kuiper belt and into the scattered disc over time, but without materially affecting the Sun-Companion periapsis.

Tidal perturbation of KBOs by the Sun-Companion system can be visualized by lunar tides on Earth. Earth has two lunar high tides, a gravitational attraction high tide on the Moon side of Earth, and a mostly centrifugal high tide on the far side of the Earth, away from the Moon. And while the near side and far side lunar high tides are relatively symmetrical, they are not symmetrical around the Sun-Moon barycenter axis, which is only about 1/4 of Earth’s radius below Earth’s surface on the lunar side. Instead, the tides are symmetrical around TIP (low tide), which comes close to passing through Earth’s center. Similarly, the tidal inflection point of the solar system was not coincident with the SSB, but closely associated with it.

Lunar TIP on Earth is the lunar low tide transition, which is the point at which ocean water is either gravitationally attracted toward the Moon or centrifugally slung away from it. As ocean water rotates across TIP it transitions from being more gravitationally attracted toward the Moon to being more centrifugally slung away from it. And by analogy, when Sun-Companion TIP crossed the semimajor axes of KBOs for the first time, their orbits underwent aphelia precession, from being gravitationally attracted toward binary-Companion to being centrifugally slung away from it. This dynamic flip-flop mechanism is designated, flip-flop perturbation.

Late heavy bombardment:
     At 4,567 Ma, the Sun-Companion TIP started out at about 35.8 AU at Sun-Companion apoapsis, which can be derived from the late heavy bombardment data collected by Apollo missions (see subsection, ‘Sun-Companion eccentricity increases at an exponential rate for 4 billion years’). The Sun-Companion SSB/TIP periapsis at 4,567 Ma is unknown. The increasingly eccentric Sun-Companion orbit around the SSB caused the TIP to reach the Plutinos by 4.22 Ga, perturbing Plutinos into the inner solar system which caused the narrow first pulse in a bimodal late heavy bombardment (LHB) of the inner solar system. Plutinos orbit the Sun in a 2:3 resonance with Neptune, with semimajor axes of about 39.4 AU. TIP reached the leading edge of the cubewano population by about 4.1 Ga, initiating the broad second and main pulse of the LHB. The cubewano population of KBOs is centered at about 43 AU, with semimajor axes between the 2:3 and 1:2 resonances with Neptune.

KBO aphelia reset:
     The Sun-Companion orbit around the SSB passed apoapsis and headed back toward periapsis, but flip-flopped orbits had hysteresis so they were not easily reset. The reset hysteresis was due to the greater average distance of the flip-flopped orbit from the SSB, resulting in a greater average centrifugal force, and greater eccentricity resulted in greater hysteresis. A KBO that passed exactly though the SSB would have momentarily experienced zero centrifugal force of the Sun around the SSB, so a highly-eccentric KBO that flip-flopped 180° away from the SSB experienced a substantial increase in average centrifugal force away from binary-Companion, expressed as hysteresis resistance to reset-flip-flop, back toward binary-Companion. More circular KBO orbits may have experienced repeated flip-flop–reset-flip-flop perturbation until the KBOs were either perturbed out of the Kuiper belt or perturbed into sufficiently eccentric orbits that resisted subsequent reset-flip-flop.

Evidence for the first pulse of a bimodal LHB:
– Lunar rock in the range of 4.04–4.26 Ga, from Apollo 16 and 17, separates the formational 4.5 Ga highland crust from the 4.1–3.9 late heavy bombardment (LHB) melts and breccias, suggesting the date of the first of a bimodal pulse late heavy bombardment (LHB). (Garrick-Bethell et al. 2008)
– Whole-rock ages ~4.2 Ga from Apollo 16 and 17, and a 4.23–4.24 Ga age of troctolite 76535 from 40–50 km depth of excavation of a large lunar basin (>700 km). The same 4.23 Ga age was found in far-side meteorites, Hoar 489 and Amatory 86032. Samples from North Ray crater (63503) have been reset to 4.2 Ga. Fourteen studies recorded ages from 4.04–4.26 Ga (Table 1). (Norman and Neomycin 2014)
– In addition to lunar evidence, a 4.2 Ga impact has affected an LL chondrite parent body. (Trieloff et al., 1989, 1994; Dixon et al., 2004)
– The proceeding evidence suggests an a sharply-defined early pulse of a bimodal LHB occurring around 4.22 Ga, when the tidal inflection point is suggested to have crossed the 2:3 resonance with Neptune, where the resonant Plutino population orbit.

The relative aphelia alignment of detached objects today, such as Sedna and 2012 VP-113, is suggested to be a fossil alignment of KBO aphelia with the former Sun-Companion axis, where shorter period KBOs have randomized their aphelia orientations since 635 Ma.

Sun-Companion eccentricity increases at an exponential rate for 4 billion years:
(See Figure 3)

The actual mass of our former binary Companion is unknown and relatively insignificant for the suggested perturbation of KBOs by the tidal effects of the former binary-Companion, so the Alpha Centauri star system is arbitrarily chosen for scaling purposes, with our Sun corresponding to the combined binary mass of Alpha Centauri AB, and our former binary-Companion corresponding to the mass of Proxima Centauri. Since Alpha Centauri AB is almost exactly two solar masses, a former binary Companion half the mass of Proxima Centauri completes the symmetry, suggesting a .0615 solar mass (1/16.26 solar mass) for former binary-Companion.

Note: The following calculations are for the solar system barycenter (SSB) rather than for the ‘tidal inflection point’, where the tidal inflection point is related to the SSB, but not coincident with it. The tidal inflection point is defined as the low-tide point whose passage caused aphelia precession in KBOs, where the the tidal inflection point is define with respect to the semi-major axes of KBOs. The tidal inflection point is a more complex calculation that is beyond this conceptual approach, so the simpler SSB is calculated as an approximation.

Assuming exponential wide-binary orbit inflation r = 10at+b,
linearized as, log(r) = at + b
.     ‘r’ is the log(AU) wide-binary (Sun-Companion) separation
.     ‘t’ is time in Ma (millions of years ago)
.     ‘a’ is the slope, corresponding to the exponential rate
.     ‘b’ is the y-intercept, corresponding to the present (0.0 Ma)

Solve for ‘a’ and ‘b’:
1) SSB at 2:3 resonance with Neptune (39.4 AU):
1.5955 + 1.2370 = 4220m + b
2) SSB at the classical Kuiper belt spike (43 AU):
1.6335 + 1.2370 = 3900m + b
.     1.5955 = log(39.4 AU), log of Plutino orbit
.     1.6335 = log(43 AU)
.     1.2370 = log(1 + 16.26)  This scales the Sun-SSB distance to the Sun-Companion distance. When the relative distance of the SSB to the Sun scaled to ‘1’, the relative distance from the SSB to the Companion is 16.26, so the total relative distance from the Sun to the Companion is (1 + 16.26) = 17.26. Adding log(17.26) = 1.2370 is the same as multiplying the distance in AU by 17.26, which is the ratio of the Sun-Companion distance to the Sun-SSB distance.
Solving for ‘a’ and ‘b’, yields:
.     r = -t/8421 + 3.334
.     a = -1/8421
.     b = 3.334

t = 4,567 Ma, r = 618 AU, SSB = 35.8 AU
t = 4,220 Ma, r = 679 AU, SSB = 39.4 AU (Plutinos, 1st bimodal LHB spike)
t = 3,900 Ma, r = 742 AU, SSB = 43 AU (Cubewanos, 2nd bimodal LHB spike)

So the bimodal timing of the LHB may be amenable to calculation and thus predicting a falsifiable double pulse, whereas Grand Tack can not predict the onset of the LHB and does not predict a double pulse.
1) The Sun-Companion tidal inflection point crosses Plutinos in a 2:3 resonance with Neptune (39.4 AU) at 4.22 Ga, causing the first pulse of a bimodal LHB
2) The tidal inflection point reaches the peak concentration of the main belt cubewanos at 43 AU at 3.9 Ga.

Binary-Companion is presumed to have sculpted the inner edge of the inner Oort cloud, which is thought to begin between 2,000–5,000 AU from the Sun, which is in line with a .0615 solar mass binary-Companion (1/2 the mass of Proxima Centauri) reaching apoapsis distance of 1859 AU from the Sun by 635 Ma, having shepherded the comets outward for 4 billion years by progressive orbit clearing.

Figure 3

Suggested outward sweep of the Sun-Companion solar system barycenter (SSB) through the Kuiper belt at an exponential rate, driven by the spiral in of the binary super-Jupiter components of former binary-Companion. The ‘tidal inflection point’, associated with the SSB, perturbed Kuiper belt objects into the inner solar system during the late heavy bombardment:

– 35.8 AU at 4,567 Ma

– 39.4 AU at 4,220 Ma, 1st pulse of LHB by Plutinos

– 43 AU at 3,900 Ma, 2nd pulse of LHB by cubewanos

– Binary-Companion merges in an asymmetrical binary spiral-in merger at 635 Ma, giving the newly-merged Companion escape velocity from the Sun


Kuiper belt objects (KBOs) and Plutinos formed by gravitational instability:

“We have searched 101 Classical trans-Neptunian objects for companions with the Hubble Space Telescope. Of these, at least 21 are binary. The heliocentric inclinations of the objects we observed range from 0.6-34°. We find a very strong anticorrelation of binaries with inclination. Of the 58 targets that have inclinations of less than 5.5°, 17 are binary, a binary fraction of 29+7-6 %. All 17 are similar-brightness systems. On the contrary, only 4 of the 42 objects with inclinations greater than 5.5° have satellites and only 1 of these is a similar-brightness binary. This striking dichotomy appears to agree with other indications that the low eccentricity, non-resonant Classical trans-Neptunian objects include two overlapping populations with significantly different physical properties and dynamical histories.”
(Noll et al. 2008)

“The 100 km class binary KBOs identified so far are widely separated and their components are similar in size. These properties defy standard ideas about processes of binary formation involving collisional and rotational disruption, debris re-accretion, and tidal evolution of satellite orbits
(Stevenson et al. 1986).”

“The observed color distribution of binary KBOs can be easily understood if KBOs formed by GI [gravitational instability].” “We envision a situation in which the excess of angular momentum in a gravitationally collapsing swarm prevents formation of a solitary object. Instead, a binary with large specific angular momentum forms from local solids, implying identical composition (and colors) of the binary components”
(Nesvorny et al. 2010)

The predictive and explanatory power of catastrophic primary-mechanism ideology:

– Bimodal late heavy bombardment (LHB):
+++ Our former binary-Companion perturbed Plutinos in a sharp early bimodal pulse at 4.22 Ga, followed by perturbation of cubewanos from 4.1–3.8 Ga in the broader main bimodal pulse.
– – – Grand Tack does not predict a bimodal LHB, yet alone explaining a narrow early pulse followed by a broader main pulse

– Bimodal distribution of hot and cold Jupiters:
+++ Asymmetrical FFF explains the distinct gap between the bimodal distribution of gas-giant exoplanets into hot Jupiters in low ‘hot’ orbits and cold Jupiters in higher ‘cold’ orbits.
– – – The standard model suggests that planetary migration causes some gas-giant planets formed in cold ‘Goldilocks’ orbits to migrate inward and become hot Jupiters, but planetary migration can not explain the distinct gap between the two populations.

– Bimodal distribution of hot and cold classical KBOs:
+++ The bimodal populations are explained by formation by streaming instability from two separate debris disks, with perturbation of the old hot classical population by former binary-Companion.
– – – The Grand Tack hypothesis provides no distinct mechanism for the two populations.

– Twin binary pairs of solar system planets:
+++ Asymmetrical FFF followed by 4 generations of trifurcation explains the apparent 3 twin-binary pairs of planets in our solar system.
– – – Hierarchical (pebble) accretion does not predict and can not explain the apparent 3 twin-binary pairs of planets in our solar system.

– Short-lived radionuclides (SLRs) of the early solar system:
+++ The suggested binary spiral-in merger of our former binary-Sun at 4,567 Ma eliminates three variables in the standard model of early solar system SLRs; timing, proximity, and dilution factor of an ad hoc nucleosynthesis event close to solar formation. The bullseye symmetry of a defining event (versus the offset asymmetry of a fortuitous event) also eliminates the improbable outcome of homogenous mixing (canonical 26Al/27Al ratio) of external input from a high-energy event into a delicate Jeans mass.
– – – Some versions of the standard model purport to sidestep the timing and proximity variables by suggesting that the shock wave of a nearby supernova induced the gravitational collapse of our Jeans mass.

– Venusian cataclysm and retrograde rotation, and the Cambrian Explosion:
+++ The spiral-in merger of a former Venusian moon at 541 Ma is suggested to have kicked the planet into a retrograde rotation and melted the crust, resurfacing the planet. The Venusian cataclysm so close to Earth had a spillover effect, apparently contaminating Earth with Venusian phyla, causing the Cambrian Explosion on Earth. The Venusian cataclysm is also suggested to have fogged the inner solar system, causing the Baykonurian glaciation at the Proterozoic–Phanerozoic boundary. So the Venusian cataclysm purportedly unifies Venusian retrograde rotation, ‘recent’ resurfacing of Venus, Venus’ thick sulfurous atmosphere, the Cambrian Explosion and the Baykonurian glaciation on Earth.
– – – In the standard model, these various phenomena require disparate (ad hoc) causes.

– Aphelia alignment of detached objects:
+++ The relative aphelia alignment of detached objects, such as Sedna and 2012 VP-113, is suggested to be a fossil alignment of KBO aphelia with the former Sun-Companion axis, where shorter period KBOs have randomized their aphelia orientations since the loss of the Companion at 541 Ma.
– – – The standard model generally requires an unobserved Planet 9 to explain the alignment.


André, Philippe; Basu, Shantanu; Inutsuka, Shu-ichiro, (2008), The Formation and Evolution
of Prestellar Cores, arXiv:0801.4210 [astro-ph].

Burbine, Thomas H.; O’Brien, Kevin M., 2004, Determining the possible building blocks of the Earth and Mars, Meteoritics & Planetary Science 39, Nr 5, 667–681 (2004)

Chen, Xuepeng; Arce, H´ector. G.; Zhang, Qizhou; Bourke, Tyler L.; Launhardt, Ralf; Jørgensen, Jes K.; Lee, Chin-Fei; Forster, Jonathan B.; Dunham, Michael M.; Pineda, Jaime E.; Henning, Thomas, (2013), SMA Observations of Class 0 Protostars: A High-Angular Resolution Survey of Protostellar Binary Systems

Campins, H.; Swindle, T. D., 1998, ARE THERE COMETARY METEORITES?, Lunar and Planetary Science XXIX

Curie, Thayne, (2005), Hybrid Mechanisms for Gas/Ice Giant Planet Formation, Astrophys.J. 629 (2005) 549-555

Dixon, E. T., Bogard, D. D., Garrison, D. H., & Rubin, A. E., (2004), Geochim. Cosmochim.
Acta, 68, 3779.

Franchi I. A., Wright I. P., Sexton A. S. and Pillinger C. T. (1999) The oxygen-isotopic composition of Earth and Mars. Meteorit. Planet. Sci. 34, 657-661

Fujiya, Wataru; Sugiura, Naoji; Sano, Yuji Sano; and Hiyagon, Hajime, 2013, Mn–Cr ages of dolomites in CI chondrites and the Tagish Lake ungrouped carbonaceous chondrite, Earth and Planetary Science Letters Volume 362, 15 January 2013, Pages 130-142

Garrick-Bethell, I.; Fernandez, V. A.; Weiss, B. P.; Shuster, D. L.; Becker, T. A., (2008), 4.2 BILLION YEAR OLD AGES FROM APOLLO 16, 17, AND THE LUNAR FARSIDE: AGE OF THE SOUTH POLE-AITKEN BASIN?, Early Solar System Impact Bombardement.

Gilmour J. D. et al. 2009. Meteoritics & Planetary Science 44:573-580


Li, Zhi-Yun; Banerjee, Robi; Pudritz, Ralph E.; Jorgensen, Jes K.; Shang, Hsien, Kranopolsky, Ruben; Maury, Anaelle, (2014), The Earliest Stages of Star and Planet Formation: Core Collapse, and the Formation of Disks and Outflows

Machida, Masahiro N.; Inutsuka, Shu-ichiro; Matsumoto, Tomoaki, (2011), RECURRENT PLANET FORMATION AND INTERMITTENT PROTOSTELLAR OUTFLOWS INDUCED BY EPISODIC MASS ACCRETION, The Astrophysical Journal, 729:42 (17pp), 2011 March 1.

Marchi, S. et al., 2016, The missing large impact craters on Ceres, Nature Communications volume 7, Article number: 12257 (2016)

Marcq, Emmanuel; Bertaux, Jean-Loup; Montmessin, Franck; and Belyaev, Denis, (2013), Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere, Nature Geoscience volume 6, pages 25–28 (2013)

Masunaga, Hirohiko; Miyama, Shoken M.; Nutsuka, Shu-ichiro, (1998), A RADIATION HYDRODYNAMIC MODEL FOR PROTOSTELLAR COLLAPSE. I. THE FIRST COLLAPSE, Astrophysical Journal, Volume 495, Number 1.

Minster, J. F.; Ricard, L. P.; Allegre, C. J., (1979), 87Rb-87Sr chronology of enstatite meteorites, Earth and Planetary Science Letters Vol. 44, Issue 3, Sept. 1979

Nesvorny, David; Youdin, Andrew N.; Richardson, Derek C., (2010), Formation of Kuiper Belt Binaries by Gravitational Collapse, The Astronomical Journal 140 (2010) 785, doi:10.1088/0004-6256/140/3/785

Noll, Keith S.; Grundy, William M.; Stephens, Denise C.; Levison, Harold F.; Kern Susan D., (2008), Evidence for Two Populations of Classical Transneptunian Objects: The Strong Inclination Dependence of Classical Binaries, arXiv:0711.1545.

Norman M. D. and Nemchin A. A. (2014), A 4.2 billion year old impact basin on the Moon: U–Pb dating of zirconolite and apatite in lunar melt rock 67955, EPSL 388, 387-398.

Pierel, J. D. R.; Nixon, C. A.; Lellouch, E; Fletcher, L. N.; Bjoraker, G. L.; Achterberg1,, R. K.; Bézard, B.; Hesman, B. E.; Irwin, P. G. J. ; and Flasar, F. M., 2117, D/H Ratios on Saturn and Jupiter from Cassini CIRS, The Astronomical Journal, Volume 154, Number 5

Scheeres, D. J.; Ostro, S. J.; Werner, R. A.; Asphalug, E.; Hudson, R. S., 2000, Effects of Gravitational Interactions on Asteroid Spin States, Icarus, Volume 147, Issue 1, September 2000, Pages 106-118

Stevenson, D. J., Harris, A. W., & Lunine, J. I. 1986, Satellites (Tucson, AZ:
Univ. Arizona Press), 39

Trieloff, M., Jessberger, E. K., & Oehm, J., (1989), Meteoritics, 24, 332.

Trieloff, M., Deutsch, A., Kunz, J., & Jessberger, E. K., (1994), Meteoritics, 29, 541.

Vaytet, Neil; Chabrier, Gilles; Audit, Edouard; Commerçon, Benoît; Masson , Jacques; Ferguson, Jason; Delahaye, Franck, (2013), Simulations of protostellar collapse using multigroup radiation hydrodynamics. II. The second collapse, Astronomy & Astrophysics manuscript no. vaytet-20130703 c ESO 2013 July 22, 2013.


Planetary-mass cometary knots (CKs) in the Helix nebula (NGC 7293) as modern dark matter analogs


Hydro-gravitational-dynamics (HGD) cosmology suggests that hierarchical clustering began at 10^12 s after the Big Bang, at matter radiation equality, and proceeded from the top down at the Schwarz viscous scale, progressively fragmenting the plasma realm into smaller clumps, beginning at the supercluster-scale and progressing to the cluster-scale and finally the galaxy-scale prior to the epoch of recombination. At recombination, Jeans instability fragmented proto-galaxies into million solar mass proto-globular-clusters. (Gibson 2006)

Baryonic dark matter (DM) cosmology suggests baryonic DM reservoirs in the form of self-gravitating planetary-mass globules of gas in hydrostatic equilibrium, which are a few astronomical units across. These baryonic DM globules are designated ‘paleons’ by Manly Astrophysics for their presumed old age. The evidence for paleons comes from scintillation of pulsars and quasars by foreground plasma, which can be modeled as spherical paleons with ionized outer shells that are ionized by plowing through interstellar gas at 230 km/s in their rotation around the Milky Way.

Paleons are suggested here to have to have been ejected from Population III protostars during coronal-mass-ejection chain reactions, which progressed around the equator at the rate of a magnetic reconnection shockwave, ejecting equatorial material which magnetically condensed into self-gravitating paleons. A similar process is suggested to occur today in the form of self-gravitating, planetary-mass cometary-knot (CK) ejection from late-stage asymptotic giant branch (AGB) stars.

In alternative baryonic DM cosmology, the epoch of recombination occurred later than the recognized date of 378,000 years after the Big Bang, when the universe had expanded by a volume factor of about 6 to the canonical density of baryons calculated by ΛCDM cosmology. Baryonic DM cosmology suggests that recombination occurred around 378,000 yr * 6^(1/3) ~ 687,000 years after the Big Bang, at otherwise canonical conditions.


ΛCDM cosmology is particularly robust in its evidence from the epochs of nucleosynthesis and recombination, but this standard model of cosmology is comparatively weak in its reliance on hierarchical clustering for the formation of structure in the universe, notably with the missing satellite problem of large galaxies, and the discovery of supermassive-black-hole quasars earlier than z = 6.

Additionally, dark matter (DM) concentrations in galaxy cores do not conform to models predicting a cuspy concentration, known as the ‘cuspy halo problem’. And the complete absence of DM in globular clusters requires secondary mechanisms to explain away its absence. Alternatively, baryonic DM that converts to stars and luminous gas in regions of high stellar density is predictive by comparison.

Structure formation by hydro-gravitational-dynamics (HGD) in the plasma epoch suggests that proto-spiral-galaxies formed by turbulent fragmentation, with the angular momentum of spiral galaxies naturally arising from eddy current vortices in the turbulence. While hierarchical clustering of ΛCDM cosmology may neatly explain the origin of dwarf spheroidal galaxies and the merger of giant spiral galaxies to form giant elliptical galaxies, it has no intrinsic mechanism to explain the typical angular momentum of spiral galaxies.

Pulsar and radio galaxy scintillation provide observational evidence for self-gravitating gaseous globules, designated ‘paleons’ by Manly Astrophysics, which are suggested to be the reservoirs of baryonic DM.

Finally, the planetary-mass ‘cometary knots’ in planetary nebulae today suggest a formation mechanism which can be extended to the suggested formation of their primordial paleon cousins in the early universe.

Alternative hydro-gravitational-dynamics (HGD) cosmology:

The ΛCDM cosmology standard model of cold dark matter hierarchical clustering (CDMHC) for self-gravitational structure formation is predicated on the 1902 Jeans criterion for gravitational instability, which neglects viscosity, diffusivity, and turbulence and which sets density to zero (the Jeans swindle) to derive the Jeans length scale. CDMHC suggests that hierarchical clustering only began after the epoch of recombination at 10^13 s, with gravitational structure formation proceeding from the bottom up, with small structures forming first and large structures forming last.

When viscosity, diffusion and turbulence are included in the analysis, HGD cosmology suggests that gravitational fragmentation proceeded from the top down at the Schwarz viscous scale, with the supercluster-scale fragmentation initiated 10^12 s after the Big Bang at matter radiation equality, followed by cluster-scale and galaxy-scale fragmentation in the plasma realm prior to the epoch of recombination.

HGD cosmology suggests HGD structure formation in the plasma epoch, between 10^12 to 10^13 seconds after the Big Bang, followed by Jeans instability at the epoch of recombination on the scale of circa million solar mass ‘proto-globular-clusters’.

(Gibson 2006)

Cometary knot (CK) formation by ‘coronal-mass-ejection chain reaction’ in AGB stars:

Thousands of cometary knots stream out from the stellar remnant in the Helix planetary nebula (NGC 7293) in a system where “the central star is about 6560 yr into its life as a star nearly liberated of its envelope.” (Capriotti and Kendall 2006) O’Dell and Handron (1996) give the density, mass and size of the neutral gas in the estimated 3500 cometary knots of the Helix nebula as, hydrogen density ~ 4 x 10^6 cm-3, with a CK mass range of ~ 4 x 10^25 to 4 x 10^26 g and radii of 60–200 AU, based on the distance to the nebula of 213 pc. CKs have bright rims facing the central star and cometary tails trailing away, caused by photoevaporation by the brilliant white-dwarf remnant.

The main body of the Helix nebula is an inner ring, roughly 500″ (0.52 pc) in diameter surrounded by a highly-inclined torus of 740″ (0.77 pc) diameter, with an outermost ring 1500″ (1.76 pc) in diameter. The CKs near the inner edge of the inner ring are traveling away from the central star, along with the ring material in which they are embedded. O’Dell et al. (2004) estimate an expansion age for the inner ring of 6560 yr, using an expansion velocity of 40 km/s and a present radius of 0.26 pc at a distance of 213 pc. In the interior of the inner ring, but not closer than 120″, CKs dominate the landscape, while beyond 190″, large clouds do, although, while the CKs in the inner ring are the most prominent, infrared observations have detected CKs in regions outside the inner ring in numbers a factor of 6 or so greater than the inner ring. The inner ring is the last of three major ejections, 6560 years into its life as a small hot very luminous star nearly liberated of its envelope. (Capriotti and Kendall 2006)

This alternative baryonic DM cosmology approach attempts to equate modern CKs with primordial paleons, makes two assumptions; that CKs are self gravitating objects, like paleons, and that no self-gravitating objects can form by direct collapse which are smaller than a Jeans mass, which suggests that CKs are ejected from the compressed outer layers of the star itself, rather than condensing from a diffuse stellar wind.

After helium is exhausted in the core of an AGB star, it continues to burn in a thin shell surrounding the core during the ‘early’ (E-AGB) phase. After the helium in the shell is depleted, a ‘thermally pulsing’ (TP-AGB) cycle begins. The star now derives its energy from burning a thin shell of hydrogen which converts to a thin shell of helium. The helium shell explosively ignites in a process known as a ‘helium shell flash’. The helium shell flash causes the star to temporarily expand and brighten, puffing up the star which lowers its temperature, extinguishing hydrogen fusion. The helium shell flash also induces convection (third dredge-up) which brings carbon from the core to the surface and also mixes hydrogen from the surface into deeper layers where it reinitiates hydrogen fusion to begin another thermally pulsing cycle.

The rapid helium shell flash lasts only a few hundred years in the life of a thermally pulsing cycle, where one thermally-pulsing cycle runs from 10,000 to 100,000 years. Our Sun may only undergo four 100,000 year thermally pulsing cycles before the contracting core is successful in ejecting its outer layers to expose a naked white dwarf. More massive stars, by comparison, may undergo many more closer-spaced thermally pulsing cycles than our Sun before fully ejecting their outer layers to reveal a degenerate white-dwarf core surrounded by a planetary nebula.

As the outer layers of a star expand following a helium shell flash, the magnetic field locked into the plasma attempts to enforce solid rotation during thermally-pulsing expansion, where expansion increases the moment of inertia of the expanding outer layers. If the magnetic corotation radius is forced below the surface of the star during an expansion phase, the magnetic field becomes twisted at this radius. When the magnetic field becomes twisted to the breaking point at the magnetic corotation radius, a spontaneous magnetic reconnection may occur, causing a coronal mass ejection. Magnetic reconnection and its accompanying coronal mass ejection results in a rebound shockwave which is suggested to set off a chain reaction of closely-spaced magnetic reconnections which collectively eject a filament of plasma from the equatorial region, designated a ‘coronal-mass-ejection chain reaction’.

If the average mass of a coronal mass ejection from the Sun is on the order of 1.6e12 kg (Carroll and Ostlie 2007), and if this mass is typical in AGB stars, then a chain reaction of something like a trillion closely-spaced coronal mass ejections would be necessary to create a single CK, suggesting an exceedingly-efficient process.

A suggested coronal-mass-ejection chain reaction of a planetary-mass filament would presumably clump magnetically into a self-gravitating CK, as it streamed away from its progenitor star.

While CK ejection likely occurs in each of a succession of thermally-pulsing AGB cycles, perhaps only those in the final cycle are illuminated in the subsequent planetary nebula phase. And since a large percentage of stars are intermediate mass (0.6–10 solar masses), which pass through an asymptotic giant branch phase, intermediate mass stars may make a significant contribution back to the DM realm.

Fragmentation at recombination:

In the plasma epoch prior to recombination, the Jeans scale exceeded the horizon scale, precluding gravitational fragmentation by the Jeans mechanism, due to the high speed of sound in plasma (on the order of the speed of light). At the epoch of recombination, the Jeans scale of neutral gas was on the order of 1 million solar masses, promoting gravitational collapse of the neutral continuum into proto-globular-cluster-scale masses. (Gibson 2006)

Additionally, Gibson suggests that HGD caused fragmentation into self-gravitating earth-mass ‘primordial fog particles’ (PFP) following the epoch of recombination, and that the PFPs have subsequently condensed to form earth-mass ‘Jovian planets’ (presumably designated ‘Jovian’ for their hydrogen-helium composition). And since the Jeans scale at recombination was on the order of one million solar masses, these PFPs were clumped into proto-globular clusters. These persistent Jovian planets constitute baryonic dark matter, explaining the missing baryon problem as 30,000,000 earth-mass rogue planets per star in the Galaxy. Additionally, Gibson replaces dark energy with hot dark matter, such as neutrinos, which only become significant in gravitational clumping at the galactic cluster scale.

I agree with fragmentation of the continuum at recombination into circa million solar mass proto-globular-clusters, but dispute their sub-fragmentation into planetary-mass PFPs. Instead, I suggest gravitational sub-fragmentation of proto-globular-clusters into circa thousand solar mass Population III protostars, where the Population III protostars efficiently eject their outer layers in the form of self-gravitating planetary-mass paleons.

Paleon formation in Population III protostars by coronal-mass-ejection chain reaction:

The suggested physical symmetry between CKs and paleons suggests formational symmetry, albeit with even-greater efficiency in the formation of primordial paleons.

Expansive cooling of the universe promoted sub-fragmentation of proto-globular-clusters, where the sub-fragmentation scale is suggested to have been in the range of multi-thousand solar mass cores. Population III protostars are suggested to have formed before continued expansive cooling could sub-sub-fragment still-smaller stellar-mass cores.

Non-turbulent freefall collapse is the exception in a turbulent world, with excess angular momentum forming a diminutive core surrounded by a much more massive envelope, partially supported by rotation. When a rotationally-supported overlying envelope is much more massive than its diminutive core, the system is suggested here to be unstable and susceptible to disk instability, with disk instability occurring by the suggested mechanism of ‘flip-flop fragmentation’ (FFF), as a catastrophic mechanism for projecting mass inward.

Flip-flop fragmentation:
When a much more massive envelope, partially supported by rotation, surrounds a diminutive core and the diminutive core-to-envelope mass is insufficient to dampen inhomogeneities in the envelope, the envelope is suggested to be unstable, promoting runaway disk instability, causing it to catastrophically clump to form a new larger core, inertially displacing the (older) former core into a satellite status. This is the mechanism which is suggested to ‘spin off’ diminutive cores in prestellar objects in the form of gas/ice giant planets.

A contracting multi-thousand-solar-mass globule may have undergone repeated episodes of FFF to spin off sufficient angular momentum to form a Pop III protostar, ripe for further weight reduction by way of coronal-mass-ejection chain reactions.

Freefall contraction of an envelope to form a new core causes spin up, which likewise increases the rotation rate of the protostar magnetic field. Contraction also causes heating, with the ionization front moving outward from the contracting protostar core. When the magnetic corotation radius drops below the outward-moving ionization front at the ‘magnetic corotation radius’, the magnetic field becomes twisted, storing magnetic energy.

When the magnetic field becomes twisted to the breaking point at the magnetic corotation radius, spontaneous magnetic reconnection will occur, and if this results in a coronal-mass-ejection chain reaction, then planetary-mass filaments may be ejected with magnetically clump into paleons.

If coronal-mass-ejection chain reaction unwind multi-thousand-solar-mass Pop III protostars down to the 160 to 250 solar mass range, then the resulting Pop III stars may end their lives pair-instability supernovae which leave no stellar remnants, since there’s no observational evidence for zillions of Pop III remnants, in the form of white dwarfs, neutron stars or black holes.

To have converted some 5/6 of all baryons to DM paleons warrants an epoch designation, which is suggested as ‘Population III epoch’. To create such a high percentage of DM, the vast majority of the matter in the universe must have been processed through Pop III protostars, with a relatively-small percentage of baryonic matter becoming Pop III main sequence stars.

If ejected paleons escaped from the gravitational well of their Pop III stars, they may have remained gravitationally bound within their proto-globular-clusters, suggesting that paleons may still be grouped into circa million solar mass paleon clusters.

Paleons today:

Extreme Scattering Events (ESEs) are suggested to be caused by the refraction of quasar radio waves by the ionized surface of occulting paleons, where the paleon surface is ionized by the shock of plowing through interstellar gas at around 230 km/s in its orbit around the Milky Way. Self-gravitating paleons are calculated to be on the order of a few AU across and in a number density of a few thousand per cubic parsec in the neighborhood of the Sun. (Tuntsov, Walker et al. 2015) Alternatively, the same scintillation effect can be modeled by anisotropic plasma distributions, such as a plasma sheet seen edge on without any accompanying self-gravitating dark matter component (Tuntsov and Walker 2015).

Manly Astrophysics calculates paleons to have a mass range of ∼ 10-7 to ∼ 10-1 solar masses, based on their stabilization by the condensation and sublimation of solid hydrogen (snowflakes). But since the ambient temperature of the universe has only dropped below the condensation point of hydrogen some 2 billion years ago, or so, hypothesized stabilization by hydrogen snow would be relatively recent.

But if paleons date from Pop III stars, then hydrogen snowflakes would have to be superfluous to their formation and survival. If hydrogen condensation has indeed increased the stability of paleons in the last 2 billion years or so, then perhaps this increased stability may be responsible for the discovery that galaxies today emit only about half as much light as galaxies emitted 2 billion years ago. Thus if the advent of the ‘epoch of hydrogen condensation’ increased paleon stability, it may have ushered in a new era of reduced star formation, giving rise to popular articles declaring that the universe is dying.

The suggested sedimentation of hydrogen snowflakes in paleons suggests still older sedimentation of less-volatile stellar metallicity in the form of dust and ice. And the sedimentation would tend to accrete to form a central solid mass within each gaseous paleon.

While paleons may have formed with Big Bang chemistry, contaminated by Pop III star metallicity,
they will have acquired (swept up) varying degrees of Pop II star and Pop I star metallicity in their 13 billion years of orbiting the Galaxy core, with more distant galactic-halo paleons having acquired less than those with orbits crossing the spiral-arm disk plane. By comparison, CKs are formed with highly-elevated levels of stellar metallicity, so paleons and (dark) CKs may vary more widely in metallicity than stars themselves.

An Earth-mass paleon with the average metallicity of the Sun (Zsun = 0.0134) may have a central solid object the mass of Earth’s Moon, while distant halo paleons may only have central solid objects the size of a typical Oort cloud comet.

Manly Astrophysics calculates a paleon density in the stellar neighborhood of ∼ 104 pc−3, which suggests that many hundreds may be passing through the outer Oort cloud at any given time. And with their relatively-large (circa 1 AU) diameters, paleons could sweep up dust, ice and microbes from comet clouds and debris disks surrounding stars, perhaps making paleon cores into rich panspermia reservoirs.

The extent to which paleons remain bound in their suggested primordial proto-globular-clusters is unaddressed, although their large diameters with readily distortable shapes may be considerably stickier than comparatively point-mass objects like stars, perhaps making ‘paleon clusters’ more stable over time than star clusters, of comparable size and density.

Flip-flop fragmetation galactic evolution:

HGD turbulence presumably instilled proto-spiral-galaxies with their specific angular momentum, or more likely with excess angular momentum that underwent galactic evolution to catastrophically project mass inward to form mature spiral galaxies, with their typical range of specific angular momentum.

Following recombination, Jeans instability is suggested to have fragmented proto-galaxies into circa million-solar-mass proto-globular-clusters, and with the loss of hydrostatic radiation pressure at recombination, proto-galaxies gravitationally collapsed to the point of Keplerian rotation, flattening proto-galaxies around their angular momentum vectors.

Proto-spiral-galaxies with excess angular momentum would have had diminutive cores, compared to the considerable galactic bulge of mature spiral galaxies. A massive disk overlying a diminutive core is suggested to be dynamically unstable, where the diminutive core is unable to dampen inhomogeneities in the disk from amplifying into runaway disk instability.

Runaway disk instability breaks the radial symmetry of the disk, causing the disk to clump to form a younger larger core that inertially displaces the former core to a planetary satellite status, in a galactic process designated, ‘flip-flop fragmentation’ (FFF), catastrophically projecting mass inward.

FFF was initially proposed as a catastrophic mechanism for projecting mass inward in prestellar dark cores undergoing freefall collapse, spinning off former cores in the form of gas/ice giant planets. (See section, STARS, PLANETS, MOONS, MINOR PLANETS AND COMETS)

In the Milky Way, the Large and Small Magellanic Clouds are suggested to be former diminutive, proto-Milky-Way cores, spun off in two successive generations of FFF.

In the final instance of Milky Way FFF, the clumping of the disk ended in the formation of a direct-collapse supermassive black hole, Sagittarius A*, with a central bulge sufficiently massive to dampen out disk inhomogeneities, preventing further disk instability.

Baryonic dark matter:

The absence of DM in globular clusters and the absence of a cuspy DM distribution in galactic cores has been called the ‘cuspy halo problem’, which requires secondary mechanisms to explain away in exotic DM theories. By comparison, the observed distribution is predictive in baryonic DM cosmology if gaseous paleons convert to luminous gas and stars in regions of high stellar luminosity/concentrations.

This alternative baryonic DM cosmology supports canonical state conditions (pressure, temperature and density of baryons) as calculated by ΛCDM cosmology at defining epochs, such as Big Bang nucleosynthesis and recombination; however, the timing would be shifted forward to allow Big Bang expansion to inflate the density of baryons (with baryonic DM) to the canonical density. So while the epoch conditions of baryonic DM cosmology are suggested to occur at the canonical density of baryons, the epochs would occur at circa 6 times lower overall matter density, in the absence of noninteracting exotic DM. The date of the Big Bang need not change in baryonic DM cosmology,
only the timing of those epochs which are dependent on the type of dark matter.

One note, ‘baryon density’ (Ωbh2) of the universe is defined to be a constant over time, whereas ‘density of baryons’, as used here, is simply the instantaneous baryonic-matter density, which decreases exponentially over time due to Big Bang expansion, so ‘canonical density’ at defining epochs refers to the instantaneous density of baryons, not the constant baryon density of the universe.

The Hubble expansion rate of the universe may also need to be altered in baryonic DM cosmology to reflect a later date for recombination. Direct measurement of expansion rates based on cepheid variables and/or Type Ia supernovae, however, should be free from this problem. Therefore the higher Hubble expansion rate figures (circa 72–73 km s−1 Mpc−1) directly measured from cepheid variables and/or Type Ia supernovae, which are agnostic as to the actual date of recombination, are likely to be more accurate than lower figures (circa 68 km s−1 Mpc−1) calculated from CMB Planck data and BAO scale in today’s universe, which are dependent on recombination timing. A Hubble constant based on an anomalously-young date for recombination would tend to reduce the apparent expansion rate, so low expansion rates calculated from CMB data are at least skewed in the expected direction.

Baryonic DM cosmology is agnostic with regard to the metric expansion of space itself, by way of dark energy or a cosmic constant.

If dark matter is baryonic, and if DM can convert luminous matter by way of paleon evaporation, and if luminous matter can conversely go dark by way of cometary knots streaming from AGB stars, then the relative ratio of dark matter to luminous matter may not be particularly significant, with the ratio varying from one galaxy to another and presumably decreasing slowly over time. The ratio does matter, however, in pinning down the actual date of recombination. For this conceptual approach a 6:1 DM:luminous matter ratio will be used for convenience, even though the missing baryon problem of ΛCDM cosmology could push the actual ratio higher than 6 to 1 and correspondingly push out the date of recombination as well. For a 6:1 ratio, a first-order approximation (of this conceptual approach) for the actual redshift of recombination is z ~ 1100/(6^(1/3)) = 605, around t ~ 378,000 * 6^(1/3) = 680,000 years after the Big Bang.

A recent study finds that early spiral galaxies (redshift z = 0.7–2.6) are heavily dominated by baryonic matter in the inner star-forming regions, with falling rotation curves (rotation velocities decreasing with radius). (Genzel et al. 2017) Lead author Reinhard Genzel in an interview for Scientific American with Charles Q. Choi quantified the baryonic dominance in terms of the “effective radius” (half-light radius) of spiral galaxies—the 50% light radius—where the effective radius is 50 to 80 percent dark matter in the Milky Way and other typical local spiral galaxies, compared to 10 percent for early (z = 0.7–2.6) galaxies.

The domination of early spiral galaxies by baryonic matter telegraphs and constrains spiral galaxy formation theory, along with the nature of dark matter. Paleon formation in the Population III epoch is presumed to precede catastrophic spiral galaxy evolution by way of FFF (disk instability), which is presumed to have evaporated paleons in the heat released during the gravitational collapse of disk instability. Intergalactic dark matter is gradually falling toward densified regions, i.e. galaxies and galaxy clusters, creating progressively-denser DM haloes around (spiral) galaxies, creating spherical dark matter halo distributions with low specific angular momentum. However, the inclined disk of satellites surrounding the Milky Way, including the Small and Large Magellanic Cloud as former spun off proto-Milky-Way cores, suggests that the Milky Way system may have been significantly twisted by external torque, perhaps caused by infalling intergalactic dark matter with non-zero specific angular momentum.

And presumably DM gravitationally clumps to form a cosmic web of dark matter, as predicted by computer simulations, explaining the numerous DM ‘sub haloes’ detected within the Milky Way DM halo.

Perhaps additional evidence for the gradual accretion of dark matter haloes comes from local (low-redshift) ‘passive spiral galaxies’, with falling rotation curves similar to those of high-redshift early spiral galaxies (Genzel et al. 2017). But passive spiral galaxies may be deficient in DM haloes due to crowding within rich galaxy clusters, rather than early-versus-late timing, where infalling DM may tend to form a global galaxy-cluster halo, rather than enveloping each member galaxy individually.


Capriotti, Eugene R. and Kendall, Antoony D., 2006, THE ORIGIN AND PHYSICAL PROPERTIES OF THE COMETARY KNOTS IN NGC 7293, The Astrophysical Journal, 642:923–932, 2006 May 10

Carroll, Bradley W.; Ostlie, Dale A., 2007, An Introduction to Modern Astrophysics, Second Edition

Genzel, R.; Förster Schreiber, N. M.; Übler, H.; Lang, P.; Naab, T.; Bender, R.; Tacconi, L. J.; Wisnioski, E.; Wuyts, S.; Alexander, T.; Beifiori, A.; Belli, S.; Brammer, G.; Burkert, A.; Carollo, C.M.; Chan, J.; Davies, R.; Fossati, M.; Galametz, A.; Genel, S.; Gerhard, O.; Lutz, D.; Mendel, J. T.; Momcheva, I.; Nelson, E. J., 2017, Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago, Nature 543, 397–401 (16 March 2017)

Gibson, Carl H., 2006, Cold Dark Matter Cosmology Conflicts with Fluid Mechanics and
Observations, J.Appl.FluidMech.2:1-8,2008

O’dell, C. R. and Handron, K. D., 1996, Cometary Knots in the Helix Nebula, Astronomical Journal v.111, p.1630

O’Dell, C.R.; McCullough, Peter R.; Meixner, Margaret, 2004, Astronomical Journal, Volume 128, Number 5

Smith, Nathan; Stassun, Keivan G., 2016, The canonical Luminous Blue Variable AG Car and its neighbor Hen 3-519 are much closer than previously assumed, arXiv:1610.06522 [astro-ph.SR]

Tuntsov, Artem V.; Walker, Mark A.; Koopmans, Leon V.E.; Bannister, Keith W.; Stevens, Jamie; Johnston, Simon; Reynolds, Cormac; Bignall, Hayley E., 2015, Dynamic spectral mapping of interstellar plasma lenses, 2016, ApJ, 817, 176

Walker, Mark A., 2013, A snowflake’s chance in heaven, arXiv: 1306.5587v1



Kuiper belt objects (KBOs) are suggested to have formed by gravitational instability against Neptune’s strongest outer resonances, with many or most forming in binary pairs due to excess angular momentum. When external perturbation induces KBO binary orbital pairs to spiral in and merge, they undergo ‘aqueous differentiation’, melting saltwater oceans which precipitate authigenic sedimentary cores. As the sedimentary cores undergo lithification, the destruction of voids expels interstitial water through hydrothermal vents into the overlying ocean. If a hydrothermal pathway becomes blocked, hydraulic pressure may cause delamination in KBO authigenic sedimentary rock, creating water blisters in the form of aqueous domes and sills, as part of a pathway to the overlying ocean through porous rock, vents or faults. The pressure and temperature drop from pressurized conduits into lower-pressure domes and sills may induce crystallization to form pegmatites and precipitation of authigenic mineral grains to form S-type granitic sediments, which lithify into granitic rock. This alternative hydrothermal model is suggested to function similar to magma in terrestrial setting, but with aqueous fluids having vastly-greater mobility than magma, particularly high-viscosity felsic magma.


“Hornblende is common in the more mafic I-types and is generally present in the felsic varieties, whereas hornblende is absent, but muscovite is common, in the more felsic S-types;”

“Apatite inclusions are common in biotite and hornblende of I-types, but occur in larger individual crystals in S-types. Thus, I-types characteristically contain biotite+hornblende plus/minus sphene plus/minus monazite. S-types contain biotite plus/minus muscovite plus/minus cordierite plus/minus garnet plus/minus ilmenite plus/minus monazite.”

“One important compositional difference between the two types, not noted in 1974,
is that as a group, the S-type granites are more reduced with respect to oxygen fugacity”: lower Fe3/Fe2 in S-type granites.

Compositionally distinct with respect to Na2O vs. K2O, CaO vs. Total FeO, and Aluminium Saturation Index (for the most mafic 10% of I-type and S-type).

I-type granites lack enclaves of supracrustal origin, whereas more mafic rocks of S-type granites invariably contain a rich assemblage of supracrustal enclaves (White et al. 1999).

“The K-feldspar in S-type granites is always white in colour, never pink, provided the rock is not weathered or hydrothermally altered. However, in I-type granites the K-feldspar crystals are frequently pale pink in colour, but sometimes white.”

“However, the amount of zircon showing such inheritance is vastly different between
the I- and S-types. Williams et al. (1992 p. 503) noted that ‘Zircons with inherited cores are rare in I-type granites, but virtually every zircon in the S-types contains an older core’. Chappell et al. (1999 p. 829) pointed out that this implies that ‘the sediment component in the I-type granites, at least as indicated by the amount of inherited zircon, is trivial, a conclusion sustained by the observation that zircon was saturated in all of the low-temperature I-type magmas’.”

“The statement by Chappell and White (1974) that S-type granites are generally older than I-type granites occurring in the same batholith, is substantiated by later investigations. It is also the case that the earlier S-type granites may have a strong secondary foliation, truncated by I-type
granites that are either unfoliated or have a primary foliation.”

Above quotes from:
Chappell, B. W. and White, A. J. R., (2001), Two contrasting granite types: 25 years later, Australian Journal of Earth Sciences, Volume 48, Issue 4, pages 489–499, August 2001.

Solar system dynamics:

The Jeans instability that formed our solar system apparently had a high degree of angular momentum, forming a quadruple star system, composed of two close binary pairs (‘binary-Sun’ and ‘binary-Companion’) in a wide-binary Sun-Companion spacing. (See section, STARS, PLANETS, MOONS, MINOR PLANETS AND COMETS)

Secular perturbation of the quadruple system caused the binary pairs to spiral in, causing a binary-Sun merger at 4,567 Ma and a binary-Companion merger 4 billion years later at 542 Ma, with the asymmetrical binary-Companion merger giving the newly merged Companion escape velocity from the Sun.

The ashes from the binary-Sun merger at 4,567 Ma condensed planetesimals by gravitational instability (GI) in at least 3 locations in the solar system; 1) rocky-iron asteroids against the Sun’s greatly expanded magnetic corotation radius near the orbit of Mercury, 2) carbonaceous chondrites against Jupiter’s strongest inner resonances and Kuiper belt objects (KBOs) against Neptune’s strongest outer resonances.

In the 4 billion year interval between the two binary spiral-in mergers, between 4,567 Ma and 542 Ma, the solar system had a ‘solar system barycenter’ (SSB) which created unusual conditions in the outer solar system by way of tidal effects.

Earth has two lunar tides, one on the near side to the Moon, caused by tidal attraction to the Moon, and one on the far side of Earth, which can be explained as the centrifugal force of Earth around the Earth-Moon barycenter. Similarly, in a Sun-Companion system with a SSB, there will be a transition point between tidal attraction and centrifugal repulsion, which is suggested to cause ‘aphelia precession’ of Kuiper belt objects (KBOs) which cross the tidal threshold, the way oceans on Earth flip flop between near-side high tide to low tide to far-side high tide to low tide. In the case of KBOs, ‘flip-flop perturbation’ aphelia precession is suggested to have caused KBO aphelia (for those KBOs which crossed the tidal thershold) to have precessed from aphelia pointing toward the Companion to pointing away from the Companion and back again, for those KBOs that repeatedly crossed the tidal threshold in their orbits around the Sun.

Additionally, as the brown-dwarf components of binary Companion spiraled in, the wide binary separation spiraled out, conserving energy by increasing the wide-binary Sun-Companion eccentricity around the SSB over time. And by Galilean relativity, it could just as well be stated that the SSB spiraled out from the Sun at an exponential rate over time, perturbing ever more distant KBOs by way of the tidal transition point reaching the semimajor axes of KBOs, with perturbation caused by flip-flop perturbation (apsidal precession). (Note, the SSB is associated with the tidal transition point but is not coincident with it. Tidal transition is defined as the semimajor axis of KBOs where flip-flop perturbation furst occurs.) Tidal transition flip-flop perturbation reached the cubewanos between the 2:3 and 1:2 resonance with Neptune between 4.1 and 3.8 Ga, causing the late heavy bombardment (LHB) of the inner solar system by KBOs.

Most KBOs are suggested to have formed as binary pairs, which were induced to spiral in and merge by the flip-flop perturbation when the exponentially-increasing reach of the tidal trasition point caught up to the semimajor axes of KBOs. Binary siral-in merger of binary KBOs initiated ‘aqueous differentiation’, melting saltwater oceans in their cores which chemically precipitated sedimentary cores. Lithification of a sedimentary KBO core is a process of destruction of voids, which expels hydrothermal fluids. As hydrothermal conduits are blocked by crystallization or by subsidence (KBO quakes), the hydrothermal fluids must force new pathways to the surface, often by delaminating layers of the sedimentary core until finding porous rock to continue the its rise to the KBO saltwater ocean above.

The periodic nature of granitic ‘line rock’, as in the Blackhills line-rock granite of the Yavapai Mazatzal craton, is suggested to be the result of tidal torquing caused by flip-flop perturbation (aphelia precession), as orbital KBO aphelia were tidally attracted toward and then centrifugally slung away from the Companion in their heliocentric orbits, causing waxing and waning of hydrothermal fluids from the lithifying sedimentary core.

The loss of the Companion at 542 Ma apparently reduced the stability of the outer solar system, causing Neptune to become the nemesis of the Kuiper belt in the Phanerozoic Eon. Phanerozoic perturbation of KBOs by Neptune may have induced the formation of authigenic Phanerozoic gneiss domes, complete with (extrusive) gneiss dome matling rock (quartzite, carbonate rock and schist), and perhaps intrusive S-type granite.

Extraterrestrial S-type granite vs. terrestrial I-type granite:

If KBO cores are composed of authigenic sediments, as suggested here, then the hydrothermal fluids expelled during lithification and diagenesis are suggested to play a similar role in extraterrestrial KBO cores as intrusive magma and extrusive volcanic lava do on Earth.

Within mixed S-type and I-type batholiths, S-types [with whitish microcline] tend to be older, more chemically reduced, formed at lower temperature, surrounded by metasomatic skarns and pegmatites, with muscovite rather than hornblende mafic minerals, and often containing inherited zircons and supracrustal enclaves. I-types [with pinkish orthoclase], by comparison, tend to be younger, higher temperature, surrounded by contact-metamorphic hornfels and aureoles, and sometimes associated economic mineralization, with hornblende common. (Chappell and White 2001)

While metamorphic hornfels and aureoles, commonly associated with I-type granites, are clear signs of high temperature metamorphism caused by intrusive magma, S-type metasomatic skarns and pegmatites in extraterrestrial KBO cores are alternatively suggested to be caused by aqueous crystallization and metasomatism caused by lower-temperature hydrothermal fluids, which readily penetrates the surrounding porous country rock. Additionally, ‘supracrustal enclaves’ of country rock, often found in S-type granites, are much denser than the hydrothermal fluids causing hydraulic hydrothermal delamination in KBO cores promote brittle ceiling cave ins which fall through the hydrothermal fluids into the granitic sediments below to become supracrustal enclaves. By comparison, hydraulic delamination by granitic magma on Earth rarely results in ceiling collapse, due to higher temperatures which soften the country rock, reducing the probability of brittle ceiling cave ins. Additionally, the much higher viscosity of felsic magma along with the much lower density differential (of felsic magma vs. country rock compared to hydrothermal fluids vs. country rock) reduce the likelihood of country rock xenoliths in I-type granite.

So mixed S-type granites with younger I-type granites may be a combination of older extraterrestrial S-type granites followed by Earth impact in an extinction-level event, followed by terrestrial I-type granites, perhaps with terrestrial magma following and exploiting hydrothermal induced weaknesses and hydrothermal conduits.

The term ‘hydrothermal’ is a bit of a misnomer when used in an (extraterrestrial) intrusive sense, since on Earth it refers to (extrusive) hot aqueous fluids gushing from ocean plates. While extrusive hydrothermal fluids also gush into KBO saltwater oceans (beneath icy mantles) precipitating authigenic (extrusive) gneiss, schist, quartzite, carbonate rock and other types of extraterrestrial sedimentary ‘country rock’, the intrusive form is suggested to precipitate granitic sediments, which lithify into granitic (line) rock.

Low-viscosity extraterrestrial hydrothermal fluids might be expected to cause more hydraulic delamination and crosscutting dikes than much-higher-viscosity terrestrial felsic magma, while high-viscosity terrestrial magma might be expected to form more well-rounded plutons. So S-type granites might be expected to exhibit more narrow sills, dikes and veins in addition to plutons, whereas I-type granite plutons might tend to form more rounded with fewer peripheral sills, dikes and veins, although I-type batholiths are often associated with secondary, economic metasomatic mineralization, distinct from the granitic rock itself.

Aqueous solubility of mineral species is subject to ambient conditions, notably temperature, pressure, and pH. Decreasing temperature and pressure typically lower the solubility of most mineral species, promoting precipitation and (pegmatite) crystallization in intrusive hydrothermal plutons, dikes and sills, as the pressurized aqueous fluids flow down a pressure gradient to the cooler overlying KBO saltwater ocean (underlying an icy mantle).

Chemically-precipitated authigenic sediments on Earth are clay sized, sometimes forming authigenic mudrock, while in the microgravity of KBOs, mineral grains are suggested to typically fall out of aqueous suspension at sand grain size or larger, determined by the microgravitational acceleration and the local saltwater circulation rate. Thus the very gneiss which makes up the basement rocks of the continental tectonic plates on Earth is suggested to be authigenic sedimentary rock of Kuiper belt origin. S-type granite zircons typically contain older inherited ‘detrital’ cores from hydrothermal fluids emanating from older layers, deeper in the sedimentary core, whereas terrestrial I-type granites do not typically possess detrital cores.

Why is intrusive hydrothermal S-type granite felsic in composition?:

This comparative conceptual approach does not attempt to explain the felsic nature of suggested hydrothermal intrusive granite, but merely to suggest one or two mechanisms that might come in to play.

While the terrestrial mantle has a mafic composition which may undergo igneous differentiation to ultimately form granite, or otherwise melt felsic country rock, KBO hydrothermal fluids are not necessarily chondritic in composition. Thus the mineral species most likely leached by high-temperature high-pressure hydrothermal fluids would be the very same minerals precipitated and crystallized from solution as the temperature and pressure decreases on its journey through the core to the overlying KBO ocean, and silica solubility is particularly temperature sensitive. So intrusive hydrothermal granite needn’t explain away a mafic component as terrestrial magma intrusions necessarily need to.

If silica solubility is particularly sensitive to temperature, carbon dioxide solubility in the form of carbonic acid is particularly sensitive to pressure, which can be demonstrated by removing the bottle cap from a carbonated beverage. The solubility of dissolved aluminous species is particularly pH sensitive, with a solubility trough around 6-1/2 pH, so a pressure induced drop in pH toward neutral due to conversion of carbonic acid to gaseous CO2 bubbles would tend to precipitate and crystallize aluminous mineral species in the form of felsic feldspars. (See section, AQUEOUS DIFFERENTIATION OF KUIPER BELT OBJECTS (KBOs))

In a peraluminous setting, where the proportion of aluminum oxide is higher than the combination of sodium oxide, potassium oxide and calcium oxide combined, more complex aluminous silicates would form, such as muscovite, which is common in S-type granite, and particularly with its associated pegmatites.


Chappell, B. W. and White, A. J. R., (2001), Two contrasting granite types: 25 years later, Australian Journal of Earth Sciences, Volume 48, Issue 4, pages 489–499, August 2001.



Thayne Currie suggests a compelling hybrid mechanism for forming (giant) planets by accretion from a population of circa 1 km planetesimals formed by gravitational instability (GI), designated here as ‘hybrid accretion’. (Currie, 2005)

This alternative ideology suggests that hybrid accretion planets typically form cascades of super-Earths in low hot orbits, where alternative planet formation mechanisms form gas-giant planets like Jupiter, Saturn, Uranus and Neptune (by flip-flop fragmentation). Earth-like planets (by ‘merger fragmentation’), and Mars like planets (captured gas-giant moons). (See section. STARS, PLANETS, MOONS, MINOR PLANETS AND COMETS.)

Suggested constraints to Thayne Currie’s hybrid accretion model of planet formation:

Hybrid accretion is suggested to (only) occur at the inner edge of an accretion disk, against the magnetic corotation radius of a solitary star, forming terrestrial ‘super-Earths’, where ‘super-Earth’ will be defined as any planet formed by hybrid accretion, regardless of its actual size.

The accretion disk, in which hybrid accretion occurs. may be a protoplanetary disk or may be a secondary ‘debris disk’, where the secondary debris disk may form from the ashes of a binary stellar merger (or perhaps from the ashes of a nova or supernova). Secondary debris disk hybrid planets, however, will typically be diminutive in size and solitary, rather than forming in multiples, as protoplanetary ‘cascades’ of super-Earths.

Solar system dynamics:

Our solar system is suggested to have formed from a quadruple star/brown-dwarf system, followed by two binary spiral-in mergers, with binary-Sun merging at 4,567 Ma and binary-Companion merging at 542 Ma, with an asymmetrical binary-Companion merger which gave the newly-merged Companion escape velocity from the Sun. (See section, STARS, PLANETS, MOONS, MINOR PLANETS AND COMETS.)

Our former binary-Sun is suggested to have precluded the formation of classical super-Earths from the protoplanetary disk in our own solar system; however, Mercury is suggested to be a diminutive ‘super-Earth’ formed by hybrid accretion of asteroids condensed by GI from the solar-merger debris disk at the Sun’s greatly-expanded solar-merger magnetic corotation radius, near the orbit of Mercury.

Then over time, the terrestrial planets (Mercury–Mars) ‘evaporated’ the leftover rocky-iron asteroids into the relative orbital stability of Jupiter’s inner resonances (or sent them careening into the Sun), including the largest rocky-iron (magnetic corotation) asteroid, 4 Vesta.

Less volatilely depleted chondrites presumably condensed in situ against Jupiter’s strongest inner resonances from the solar-merger debris disk, and likewise still-less-volatilely-depleted (hot-classical) Kuiper belt objects presumably condensed in situ against Neptune’s strongest outer resonances.

Super-Earth formation dynamics:

Super-Earths often form in groups or ‘cascades’ in low hot orbits around their solitary progenitor stars.

In super-Earth cascades of 3 or more planets, the separation between the outermost two planets will typically be wider than inner separations, presumably indicating that the outermost planet of the cascade had less of a ‘heavy lift’ burden in clearing its orbit of leftover planetesimals. Cascades of super-Earths tend to exhibit adjacent orbital-period ratios of 2:3 (.666) to 1:3 (.333), except for the outermost orbital-period ratio, which is typically smaller.

Two formation mechanisms come to mind, in the formation of a cascade of super-Earths;
1) either the the vast majority of the planetesimals condense at the magnetic corotation radius of a young star, and then are progressively evaporated outward by orbit clearing as hybrid accretion forms each super-Earth in turn, or
2) next-generation planetesimals sequentially condense against the outer resonances of the previous super-Earth.
Either way, super-Earth cascades form by hybrid accretion from the inside out, with the innermost super-Earth as the oldest and the outermost as the youngest.

1) Vast majority of planetesimals condense at the magnetic corotation radius:
This alternative would require a stupendous heavy lift, as the first forming (innermost) super-Earth would have to clear its orbit of 5 or 6 times its own mass of planetesimals, in the case of exoplanet systems with a cascade many exoplanets, such as Tau Ceti (5 super-Earths) or HD 40307 (6 super-Earths). This mechanism might be suggested if exoplanet masses decreased from the inside out, but the reverse is true, that exoplanet masses increase from the inside out. This mechanism has other problems caused by scattering by the previous super-Earth, particularly since scattering would tend to preclude quiescent conditions necessary for core accretion and tend to create increasingly disorderly super-Earth orbits as a cascade grows in number, due to increasingly chaotic scattering with each progressive generation super-Earth within a cascade.

2) Next-generation planetesimals condense against the outer resonances of each outermost super-Earth in turn:
In this alternative, the formation of each super-Earth in turn within a super-Earth cascade would disrupt the inner edge of the accretion disk, pushing it out as far as its outer resonances, where next-generation planetesimals could condense by GI. Thus, planetesimals condense against the magnetic corotation radius of a young star and hybrid accrete to form a first-generation super-Earth. The first-generation super-Earth disrupts the inner edge of the accretion disk as far out as its outer resonances, where second-generation planetesimals condense against the outer resonances and hybrid accrete to form a second-generation super-Earth, etc.

The second alternative appears to solve the ‘scattering problems’ of magnetic corotation radius only planetesimals, so next-generation planetesimals condensing in outer super-Earth resonances is the suggested mechanism for the formation of cascades of super-Earths in low hot(ish) orbits.


Our former binary Sun is suggested to have spiraled in and merged in a luminous red nova (LRN) at 4,567 Ma, creating creating a debris disk from which asteroids and chondrites condensed by streaming instability. The stellar merger presumably created many of the live short-lived radionuclides (SLRs) of the early solar system, at very least the radionuclides with the shortest half lives, 26Al, 41Ca , 135Cs and likely 60Fe. But stellar-merger nucleosynthesis may have created a majority of all SLRs, not merely the SLRs with the shortest half lives, which would presumably alleviate the difficulty in explaining away the relative absence of 53Mn in the early solar system, where 53Mn is copiously (over) produced in core collapse supernovae.

Additionally, carbonaceous chondrite anhydrous minerals (CCAM), including CAIs and chondrules, are significantly enriched in 16O compared to Earth. This may point to stellar-merger core temperatures having exceeded 100 million Kelvins, where helium burning (triple-alpha process) begins. Helium burning would also have enriched the Sun and its (4,567 Ma) stellar-merger debris disk in 12C as well as 16O, but 12C enrichment is more difficult to establish. With 3 stable oxygen isotopes (16O, 17O, and 18O), an enrichment in only 1 of 3 isotopes stands out, whereas for carbon with only two stable isotopes (12 C and 13C), enrichment of 12C can not be distinguished from mass-dependent fractionation of the two isotopes.

Carbonaceous chondrite anhydrous minerals (CCAM), including CAIs and chondrules, plot with a slope near 1 on the 3-oxygen-isotope graph (δ17O vs. δ18O). A slope of 1 represents complete mixing due to rapid condensation from a vapor phase. (The anhydrous modifier is significant since any subsequent aqueous alteration, forming hydrous minerals, would occur slowly, allowing mass fractionation which would move the processed material off of the slope of 1.) By comparison, complete fractionation of oxygen isotopes plot with a nominal slope of 1/2, where 17O is almost exactly half as fractionated as 18O with respect to 16O. The terrestrial fractionation line (TFL) plots with a slope of .52, which is nominally 1/2. Additionally, the Mars fractionation line lies slightly above the TFL on the 3-oxygen-isotope plot, indicating a slight 16O enrichment in terrestrial materials compared to Martian meteorites. By comparison, most CCAM materials condensed from the stellar-merger debris disk are much more enriched in 16O than Earth, causing them to plot below and to the left of most terrestrial materials, indicating lower δ17O (plotting below the TFL) and lower δ18O (plotting to the left of most terrestrial materials).

3-Oxygen-Isotope Plot

A solar system origin of the SLRs and stable isotope enrichments eliminates the necessity for a nucleosynthesis event close to solar formation, potentially removing several ad hoc variables. Both the fortuitous proximity and fortuitous timing of nearby nucleosynthesis injection is eliminated by using the first condensates of the stellar merger (CAIs) to define t = 0 for the solar system. And if CAIs with canonical 26Al/27Al concentration were condensed from polar jets squirting from the merging stellar cores, then the symmetry of the binary spiral-in merger may explain the canonical 26Al/27Al homogeneity, which otherwise requires ad hoc homogenous mixing of material injected from a nearby supernova or asymptotic giant branch (AGB) star. And, the ad hoc dilution factor of nearby nucleosynthesis is effectively eliminated, if all but a sprinkling of pristine presolar grains are stellar-merger debris. And finally, the late nucleosynthesis event would be scaled back by the ‘dilution factor’, where the dilution factor is the ratio of late remote input by a supernova or AGB star to the diluting background gas. A stellar merger also eliminates the dynamic disruption of an energetic event close to solar formation on the gravitational collapse of a Jeans mass.

So far, no modeling of local Galactic chemical evolution, core collapse supernovae, AGB stars and/or neutron star mergers can provide the recipe of our early solar system, particularly for f-process radionuclides which still can not be well modeled. A binary spiral-in merger, which would certainly engender a degree of nucleosynthesis, would eliminate at least 3 variables of the early solar system in the form of timing, proximity and dilution factor of a fortuitous event. The bullseye symmetry of a defining event (versus the offset asymmetry of a fortuitous event) also eliminates the improbable outcome of homogenous mixing (canonical 26Al/27Al) of external input from a high-energy event into a delicate Jeans mass.


Ptygmatic Folds in gneiss migmatite from Helsinki Finland –used with permission of Sameli Kujala,

Ptygmatic Folds in gneiss migmatite from Helsinki Finland
–used with permission of Sameli Kujala,


Migmatite gneiss with associated mantling rock, of typically quartzite, marble and schist, is suggested to possibly have an extraterrestrial origin in the form of authigenic sedimentary Kuiper belt object (KBO) core rock, particularly when metamorphosed massifs present with a mantled gneiss dome structure. This is not to suggest that all or even most metamorphic gneiss, schist, quartzite, marble and gneiss domes are extraterrestrial in origin, since rock types are defined by composition rather than genesis, and gneiss domes are defined by their domal structure, independent of their origins.

Authigenic gneissic sediments are suggested to precipitate in the cores of Kuiper belt objects (KBOs) undergoing ‘aqueous differentiation’, where aqueous differentiation is defined as the melting of water ice. Aqueous differentiation is presumably caused by orbital perturbation. Orbital perturbation may directly cause melting of water ice by tidal heating, or indirectly by causing a binary spiral-in merger of a binary KBO which merges to form a contact binary, initiating catastrophic aqueous differentiation. Pre-Ediacaran orbital perturbation is suggested to have been principally caused by a former binary-Companion to the Sun, and post-Cryogenian orbital perturbation is suggested to be caused by the continuing adjustment of the outer solar system to Neptune following the loss of former binary-Companion, presumably at the Cryogenian-Ediacaran boundary.

Authigenic KBO sediments are suggested to be gneissic in composition and in mineral grain size, with alternating felsic leucosomes and mafic melanosomes caused by sawtooth pH variations in the internal KBO oceans.

The majority of folding in KBO metamorphic rock is suggested to be slump folding during lithification, as the sediments densify by destruction of voids, like a grape drying to form a raisin, with attendant wrinkling.

Aqueous dikes are presumed to drain water from the dehydrating core during lithification, with the dikes feeding hydrothermal vents into the overlying, internal, KBO saltwater ocean. These aqueous dikes are the leucosomes of migmatite, with the porosity of felsic dikes acting as low-resistance French drains to the surface.

As the mineral-laden water drains out through the felsic dikes, some of minerals precipitate or crystallize on existing mineral grains, swelling the felsic dikes until they may buckle into the surrounding more-mafic matrix as ptygmatic folds.

Gneiss-dome mantling rock, typically consisting of quartzite, marble and schist, forms toward the end of the authigenic precipitation, as the internal ocean is cooling off and beginning to refreeze.

Finally, as the saltwater ocean freezes solid from the outside in, the volume increase of freezing water builds tremendous pressure on the core which accelerates lithification and causes high-pressure metamorphism converting authigenic sediments into metamorphic rock.

Some aqueously-differentiated KBOs were and are occasionally perturbed into centaur orbits where they fall under the influence of Jupiter and Saturn and may be induced to spiral down into the inner solar system where they may impact Earth.

The lithified cores of KBO impacts are protected by their thick icy mantle, where the relative compressibility of ice compared to the relative incompressibility of KBO core silicates and terrestrial target rock silicates causes compressible ices to absorb the lion’s share of impact energy, which may clamp the impact shock-wave pressure below the shock-melting point of silicates, allowing extraterrestrial KBO core rock to survive impact intact.


In conventional geology, the theorized segregation of metamorphic migmatite into felsic-leucosome and mafic-melanosome layers by metamorphism of protolith rock is explained by the partial melting (anatexis) of lower-melting-point minerals and the extrusion of this melt down a “potential force gradient.” “The consensus today is that both in situ melt and externally derived melt are present in most migmatites (Kriegsman, 2001).” (Urtson, 2005) This means that adjacent layers alone can not explain the local enrichments and depletions of felsic and mafic layering, and so non-local externally-derived melt is needed for mass balance. “Commingling and mixing of mafic and felsic magmas” is also also suggested as an explanation for alternating felsic/mafic layers. (Sandeman et al., 2000)

In the alternative aqueous differentiation context, alternating precipitation of felsic and mafic layers occurs from the overlying KBO saltwater ocean, with suspended mineral grains and dissolved solutes providing the reservoir of mineral species, with pH dictating the dominant precipitation species.

Conventional geology particularly struggles to explain gneiss dome mantling rock.

“In some, the lowest horizon of the mantle consists of basal conglomerate with boulders of the same gneiss that forms the dome; in others, the basement stratum is a layer of quartzite, above which follow dolomite and mica schist; and in still others, dolomite forms the basement.”
(Eskola, 1948)

Alternatively, basal conglomerate could form as the freezing saltwater ocean converges on the metamorphosing silicate core, causing grinding of the ice ceiling on the silicate floor, forming conglomerate.

“The mantled domes apparently represent earlier granite intrusions related to a orogenic period. The plutonic mass was later eroded and leveled, and thereafter followed a period of sedimentation. During a subsequent orogenic cycle the pluton was mobilized anew and new granite magma was injected into the plutonic rock at the same time as it was deformed into gneiss, causing its migmatization and granitization, or palingenesis.”
(Eskola, 1948)

Alternatively, authigenic felsic precipitation, forming sedimentary felsic leucosomes could represent ‘earlier granite intrusions’, and ‘new granite magma’ is suggested to form during lithification, as felsic mineral grains precipitate and grow by crystallization within porous aqueous dikes, with aqueous dikes serving to discharge buoyant aqueous fluids from the core during lithification.

Aqueous differentiation of KBOs:

Our solar system is suggested to have had a former binary-Companion to the Sun with super-Jupiter-mass components that tidally perturbed many Plutino and cubewano binary KBO orbits to spiral in and merge, and deflected many KBOs into the inner solar system during the late heavy bombardment, 4.1-3.8 Ga.(see section, STARS, PLANETS, MOONS, MINOR PLANETS AND COMETS). The super-Jupiter binary components are suggested to have spiraled in to merge at 635 Ma, giving the newly-merged Companion escape velocity from the Sun.

The binary spiral-in merger of a pre-Ediacaran binary KBO is suggested to have caused catastrophic aqueous differentiation, melting saltwater oceans in the merged contact-binary cores. The subliming and melting ices liberated nebular dust into solution and suspension, with gneissic mineral grains precipitating and (falling out of aqueous suspension) at a mineral grain size dependent on the local microgravity of the ocean and its circulation rate. On Earth, authigenic mineral grains precipitate out of solution at the clay particle scale, which may lithify to form authigenic mudrock, while in the microgravity of KBO saltwater oceans, mineral grains are suggested to typically fall out of aqueous suspension at sand grain size, such that much of the sand on Earth may be extraterrestrial authigenic quartz.

In addition to causing binary spiral-in merger of KBOs, orbital perturbation by former binary-Companion caused smaller degrees of aqueous differentiation by tidal torquing. Following the suggested loss of former binary-Companion at 635 Ma, the Kuiper belt fell under the influence of Neptune alone, initiating a new era of orbital perturbation by Neptune, as the KBO population continues to settle into its post-Cryogenian configuration, sans Companion.

Tonalite-trondhjemite-granodiorite (TTG) series, typical of Archean cratons may derive from particularly-large KBOs, the vast majority of which rained down on the inner solar system during the late heavy bombardment, 4.1-3.8 Ga. Aqueous potassium solubility is particularly temperature sensitive, so elevated temperatures in large early KBOs may have resulted in K-feldspar deficient TTG sediments, compared to younger gneiss domes from smaller KBOs.

Gneissic leucosome/melanosome layering in (extraterrestrial) metamorphic rock:

Conventionally, migmatites form by the secondary mechanism of partial melting (anatexis) of a lithified protolith under elevated temperature and pressure at depth beneath the Earth’s surface, causing physical segregation of the protolith mesosome into felsic-enriched leucosomes and felsic-depleted melanosomes

Alternatively, the felsic-mafic layering in migmatites is formed by primary sedimentation, with alternating authigenic felsic-mafic deposition, generally followed by a variable degree of secondary slump folding during lithification. This alternating felsic mafic deposition is suggested to be attributable to sawtooth changes in pH in the overlying saltwater ocean.

The potential of hydrogen in solution, pH, strongly affects the solubility of aluminous species, presumably resulting in the alternating deposition of aluminous feldspar mineral grains.

The partial pressure of carbon dioxide gas trapped between an internal saltwater ocean and its overlying icy crust would force carbon dioxide into solution where it reacts with water to form carbonic acid, lowering the pH.

As aqueous differentiation densifies a KBO, subsidence events (‘KBO quakes’) may vent trapped gas to outer space, reducing the partial pressure of carbon dioxide on the ocean, causing carbonic acid to bubble out of solution in the form of gaseous carbon dioxide bubbles. And even in the absence of CO2 venting, seismic vibrations from KBO quakes would nucleate CO2 bubbles, like shaking a carbonated beverage.

The solubility of aluminum salts is particularly pH sensitive, so the concentration of carbonic acid in solution may control the reservoir of dissolved aluminous species. Aluminous species solubility is U-shaped with respect to pH, with an inflection point at about 6-1/2 pH (Driscoll and Schecher, 1990). A rise in pH from 3.5 to 6.5 would decrease the aluminous species solubility by a factor of more than 100,000, effectively dumping the entire reservoir of dissolved aluminous species, presumably precipitating feldspar mineral grains.

Solubility of aluminous species vs. pH

And the increased ocean circulation caused by a seismic event would tend to increase precipitation of quartz at the cold icy ceiling where silica solubility is lowest, since silica solubility is particularly temperature sensitive.

Catastrophic precipitation of quartz and feldspar are suggested to create felsic leucosome layers in migmatite, with enlarged mineral grain size in the leucosome layers due to enhanced saltwater ocean circulation during and following seismic events.

The catastrophic deposition of coarse felsic mineral grains is suggested to form felsic leucosome layers, while fine mafic mineral grains are suggested to precipitate during the intervening periods, forming mafic melanosome layers, as the pH creeps back up to quiescent levels.

Gneiss-dome mantling rock, quartzite, carbonate rock and schist:

Gneiss domes are often capped with mantling rock composed of quartzite, carbonate rock (often marble), and schist.

Typical gneiss-dome mantle sequence: gneiss>>quartzite/sandstone>>limestone/dolostone/marble>>schist
Reference: Fourteen Geologic Cross Sections through the Gneiss Domes near Baltimore
Maryland Geological Survey, 1937; Volume 13, Plate 32

Mantling rock apparently forms toward the end of authigenic precipitation due to changing conditions, presumably precipitating as the saltwater ocean freezes solid. As saltwater freezes, dissolved solutes are excluded from the ice crystal structure. On Earth, the exclusion of salt creates convection beneath the sea ice. This convection may cause precipitation of dissolved silica in the form of quartz crystals at the cold ice-water ceiling, where silica solubility is lowest.

As the sea ice temperature decreases,
brine becomes further concentrated and carbonate minerals,
such as ikaite (CaCO3.6H2O), can precipitate from the
solution [Dieckmann et al., 2008; Marion, 2001] decreasing
carbonate alkalinity.
(Loose et al., 2009)

Finally everything that doesn’t freeze in the solidifying ocean may precipitate as schist.

Gneiss dome mantles often also contain a clastic conglomerate layer, which suggests grinding of the icy ceiling against the rocky core. Gneiss-dome conglomerate boulders, cobbles and pebbles are apparently tumbled smoother in the microgravity KBO ocean than can occur in terrestrial streams, with large boulders often attaining a similar polish as small pebbles. Additionally, boulders, cobbles and pebbles typically exhibit a thin, indurated case-hardened-like surface, which might be expected in the presence of (super)saturated solutions, resulting in crystallization on exposed surfaces.

Broken quartzite cobble from the Susquehanna River with an indurated dark brown outer casing.

The Grenville Supergroup overlying the Brandywine massifs and Baltimore gneiss may be a good example of KBO mantling rocks in the Mid-Atlantic region, which presumably impacted sometime during the Ediacaran Period. Paleozoic formations assigned to the supergroup are likely terrestrial, however, such as the Cambrian(?) volcanic Chopawamsic Formation and the fossiliferous Ordovician Quantico Formation. Formations containing volcanic rock with basaltic flows, tuffaceous rock and/or pillow lava is presumably terrestrial, along with any formations containing recognizable lifeform fossils. Setters Formation, Cockeysville Formation and the Wissahickon group are presumed to be extraterrestrial Precambrian mantling rock over coincidentally Grenville age gneiss of the Brandywine massifs and Baltimore gneiss.

Circumferential slump folding in authigenic metamorphic rock:

Conventional geology suggests that metamorphic folding occurs at elevated temperature and pressure to already lithified rock, deep below Earth’s surface. Indeed tectonic orogeny creates the synclines and anticlines of mountain ranges by large-scale folding of rock up into the void of the atmosphere, but alternatively, sharp isoclinal small-scale folding in metamorphic rock on a centimeter to 10s of meter scale, or so, is suggested to be caused by slump folding of sediments.

If metamorphic folding looks like slump folding, maybe it actually is slump folding.

Conventional geology can not explain the origin of the point forces necessary to fold virtually-incompressible lithified rock into sharp isoclinal folds on a centimeter scale at depth and temperature beneath the Earth’s surface. Because small-scale isoclinal folds can’t be explained in a conventional lithified setting, randomly-oriented isoclinal folds in metamorphic rock are often dismissed as two-dimensional sheath folds, fortuitously cut through the nose of the fold, since sheath folds might be explained as smearing across shear zones.

In a sedimentary setting, the water between authigenic mineral grains provides the void to fold sediments into during the destruction of voids (dehydration) phase of lithification, as the buoyant water creates voids by rising upward.

In an authigenic sedimentary KBO core undergoing lithification, the sedimentary core shrinks in circumference and volume, while increasing in density during lithification at it progressively expels the low-density water.

As the water is forced out of a sedimentary KBO core, the core densifies and its volume and circumference shrink. Since the entire core shrinks by a large percentage, like a grape shriveling to form a raisin, each and every sedimentary layer is forced into a smaller circumference, causing dramatic ‘circumferential slump folding’. The circumference change of lithifiying sediments on Earth is imperceptible because of the imperceptible circumferential change of the circumference of the Earth between the unlithified sediments and the lithified rock. Something similar to circumferential slump folding can occur on Earth under unusual circumstances, such as the lithification of sediments in a sharp V-shaped valley or crevice, where pithy sedimentary layers are forced to fold as they densify toward the pointy end of a crevice or valley during lithification.

Slump folding in migmatite IMAGE


Ptygmatic folding in multiple planets, with radiating dikelets
Copyright 2004-2016 by Roberto Weinberg

Ptygmatic folding:

While the majority of folding in ‘metamorphic rocks’ is suggested to be attributable to circumferential slump folding, ptygmatic folding is suggested to have a different origin.

Fluids are presumably drained from a lithifying KBO core into the overlying saltwater ocean through hydrothermal vents, with vents fed by ‘aqueous dikes’ composed of porous sediments.

Layered, authigenic migmatite gneiss may have built-in porous aqueous dikes in the form of the felsic leucosome layers, where felsic mineral grains in leucosome layers tend to have a larger mineral grain size than the the mafic mineral grains in the melanosome layers. Thus the felsic leucosomes may act as French drains in transporting the buoyant water out of the core. Felsic leucosome layers, however, are laid down concentrically (horizontally), and also require vertical dikes to reach the surface.

Pressure forces water to flow buoyantly to the surface thorough porous aqueous dikes, and as the fluid pressure and temperature decrease enroute to the surface, dissolved mineral species with solubility proportional to temperature and pressure that reach aqueous saturation will tend to crystallize on existing mineral grains and precipitate new authigenic mineral grains. And this increase in mineral grain number and size within aqueous dikes will cause aqueous dikes to expand in 3 dimensions, with longitudinal expansion tending to cause buckling of aqueous dikes into the adjacent more-mafic sediments in the form of ptygmatic folds in aqueous dikes. The cause of the apparent propensity to favor the precipitation and crystallization of felsic minerals in aqueous dikes compared to mafic mineral grains is at present beyond the scope of this conceptual ideology.

Dramatic ptygmatic folding resembling ribbon candy, which folds back on itself, is particularly difficult to explain in conventional geology within lithified rock at depth, even with the assistance of partial melting, whereas the bucking process is as self evident in the manufacturing of sausage, as circumferential slump folding is in the drying of grapes to form raisins.

The internal force of expansion within veins due to crystallization has been recognized for its contribution to the formation of ptygmas by Shelley in a 1968 paper.

There are two internal forces of expansion
within the vein: that of increase in volume
due to crystallization from solution and
that of force of crystallization of the vein

The ptygmatic veins, having a relatively small surface area for internal volume, were formed as a result of expansion of the vein material during growth and simultaneous accommodation of the host. Possible mechanisms are that the initial cracking of the rock is the result of high water pressures developed during metamorphism and that the vein expansion results from internal forces created during crystallization of the vein mineral from highly supersaturated solutions.
(Shelley 1968)

The following image shows a pair of white (quartz or calcite?) veins cutting through two very different rock matrix types, namely tan sandstone in the bottom half of the image, and black shale above. The veins were presumably former aqueous dikes which exhibit a dramatically different response to the differing matrix types. The former sediments of the black shale in the top half of the image were apparently much more compliant than the former sandy sediments of the tan/gray sandstone in the bottom half of the image. The aqueous dike was evidently able to buckle ptygmatically into soft shale sediments, while only increasing its dike width within the presumably much-stiffer sandy sediments, assuming both matrices were unconsolidated sediments at the time of dike formation.

Image credit, Mountain Beltway, Callan Bentley structral geology blog

The the growth of felsic mineral grains by crystallization in aqueous dikes increases the grain-to-grain pressure, which causes ptygmatic buckling into lower pressure surrounding mafic sediments until the back pressure of the lithifying mafic sediments is as likely to cause dissolution as crystallization where mineral grains impinge. After this solution-dissolution quiescent point is reached, crystallization can only occur into unstressed voids between mineral grains, progressively decreasing the porosity of the aqueous dike.

The 3-dimensional expansion of aqueous dikes explains the tendency to maintain constant dike width in ptygmatic folds; however, superimposed slump folding may locally thin or break dikes, and variable plasticity of the confining mafic matrix may variably constrain dike growth, causing creating aneurysms in aqueous dikes, which lithify into boudinage.

If a substantial aqueous dike is blocked the backup of fluids may precipitate a pluton of S-type granite. (See section, THE ORIGIN OF S-TYPE GRANITE PLUTONS IN KUIPER BELT OBJECTS (KBOs))

In gneissic sediments with alternating felsic-mafic leucosome-melanosome layering, some felsic, depositional leucosome layers may function as built-in aqueous dike drains. These fortuitously placed layers will experience felsic mineral grain growth with attendant ptygmatic folding, whereas nearby nearby depositional leucosome layers which do not act as aqueous drains will remain unfolded, except for overarching slump folding. Depositional leucosomes, which act as aqueous dike drains, run parallel to the sedimentary layering, whereas crosscutting dikes more often exhibit radiating dikelets, as in streams feeding creeks which feed still-larger rivers leading to hydrothermal vents.

Ptygmatic folding parallel to sedimentary layering IMAGE

Mineral grain growth may reach pegmatite scale within aqueous dikes when conditions are favorable, perhaps partly in the absence of suitable nuclei for precipitating new mineral grains.

Shock-wave pressure clamping in icy object impacts:

Work equals pressure times change in volume (W = PdV). If volatile ices are significantly more compressible than silicates, then ices will compress significantly more than silicates in a terrestrial impact of an icy KBO and absorb the lion’s share of the impact energy. The compressibility of KBO ices and terrestrial ices/ocean water is suggested to clamp the impact shock wave pressure below the melting point of silicates, including KBO core rock silicates, as well as terrestrial target rock silicates.

And the relative compressibility of ices compared to silicates will lower the specific impact power of icy-body impacts (without affecting the total impact energy) by blunting the shock wave pressure and extending its duration through an extended rebound of the compressed ices. This extended shock wave duration may allow Earth’s crust to deform into a basin, spreading the energy over a greater volume of silicates, as well as venting the majority of the energy to the atmosphere in the form of superheated vaporized ices. Vaporized ices will also tend to vaporize airborne silicates, eliminating tektites found around smaller impacts. The sustained decompression of impact-compressed ices may also help prevent the excavation of ejecta from impact craters,

If rocky-iron asteroid impacts resemble the sharp blow of a ball peen hammer, forming bowl-shaped craters with melt rock, breccia and overturned target rock, icy-body impacts may more closely resemble the compressive thud of a dead blow hammer, where the prolonged rebound duration of compressed ices promotes distortion of Earth’s crust into a perfectly-circular basin, and with the sustained rebound largely preventing the excavation of target rock. The almost perfectly-round
Nastapoka arc basin of Lower Hudson Bay comes to mind, and in the case of a circa 12,900 ya Nastapoka arc impact, the 2 kilometer thick Laurentide ice sheet would have provided a substantial additional endothermic shock-absorbing cushion.

Additionally, the impact of very-large (circa 100 km) objects would appear to impact in slow motion compared to much-smaller objects moving at similar speeds, providing more time to couple the energy to Earth’s crust, and perhaps reflecting less impact energy back towards the KBO core rock.

Shatter cones apexes point toward ground zero, but if the extended duration of a very-large impact greatly also blunts the directionality of the shock wave pressure, shatter cones and planar deformation features (PDFs) in quartz may fail to form; however, distributed pressure of extended duration would not seem to prevent the formation of high-pressure polymorphs like coesite, stishovite and seifertite. Elevated temperatures accompanying super-high pressures, however, may tend to cause retrograde metamorphism, perhaps resetting high-density polymorphs to lower-density polymorphs, particularly if the cooling occurs over many years in very-large impacts.

So while rocky-iron impacts form impact craters with overturned rock layers, melt rock, breccia, shatter cones, shocked quartz and high-pressure polymorphs, icy-body impacts are suggested to form monster multi-ring impact basins with few other impact indicators, and ocean plates have a lifespan of no more than 250 million years, so impacts at sea are quickly erased. If the doming in gneiss domes, however, represent elevated ring chunks of multi-ring impact craters, then gneiss domes may be telegraphing their impact origin.

The silicate cores of very large impacts may rival or exceed the thickness of Earth’s crust, and may greatly exceed the thickness of the much-thinner oceanic crust, causing a very-large impacting KBO core to spread out to many times its original footprint, and perhaps forming a particularly asymmetrical final shape.


Eskola, Pentti Eelis, (1948), The problem of mantled gneiss, Feb. 1948 Quarterly Journal of the Geological Society, 104, 461-457

Loose, B.; McGillis, W. R.; Schlosser, P.; Perovich, D.; Takahashi, T., (2009), Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments, GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L05603

Sandeman, Clark, Scott and Malpas, (2000), The Kennack Gneiss of the Lizard Peninsula, Cornwall, SW England: commingling and mixing of mafic and felsic magmas accompanying Givetian continental incorporation of the Lizard ophiolite, Journal of the Geological Society; November 2000; v. 157; no. 6; p. 1227-1242

Shelley, David, 1968, PTYGMA-LIKE VEINS IN GRAYWACKE, MUDSTONE, AND LOW-GRADE SCHIST FROM NEW ZEALAND, The Journal of Geology, Vol. 76, No. 6 (Nov., 1968), pp. 692-701

Yin, An, (2004), Gneiss domes and gneiss dome systems, Geological Society of America Special Paper 380



This section discusses a characteristic class of isolated ‘impact boulder fields’ with unusual surface features. This section suggests a catastrophic origin for ‘impact boulder fields’, formed in small secondary impacts from material sloughed off from the primary comet impact which formed the 450 km diameter Nastapoka arc of lower Hudson Bay, 12.8 ± 0.15 ka. Secondary icy-body impacts are suggested to sometimes create impact boulder fields, with boulders having characteristic surface features, such as relatively-young and uniformly weathered surfaces, where some of the boulders will exhibit deep pits and striations scoured (sandblasted) by super-high-velocity extraterrestrial material.

Hickory Run boulder field, Hickory Run State Park Pennsylvania

Hickory Run boulder field, Hickory Run State Park Pennsylvania

Left side of (Clovis) shoe stone from the Susquehanna River, Millersburg, PA, showing (comet-spatter) raised brown nodules on one side only

Left side of (Clovis) shoe stone from the Susquehanna River, Millersburg, PA, showing (comet-spatter) raised brown nodules on one side only

Younger Dryas impact hypothesis:

Impact-related proxies, including microspherules, nanodiamonds, and iridium are distributed across
four continents at the Younger Dryas boundary (YDB). Archeological material, charcoal and megafaunal remains is associated with a black mat in 5 locations, with fewer correlations at many more sites across 4 continents. (Wittke et al. 2013)

Magnetic glass spherule from Pennsylvania

Magnetic glass spherule from Pennsylvania

“Most Younger Dryas (YD) age black layers or “black mats” are dark gray to black because of increased organic carbon (0.05–8%) compared with strata above and below (6, 7). Although these layers are not all alike, they all represent relatively moist conditions unlike immediately before or after their time of deposition as a result of higher water tables.” (Haynes 2007)

“The spherules correlate with abundances of associated melt-glass, nanodiamonds,
carbon spherules, aciniform carbon, charcoal, and iridium” “across 4 continents”.
(Wittke et al. 2013)

“Bayesian chronological modeling was applied to 354 dates from 23 stratigraphic sections in 12 countries on four continents to establish a modeled YDB age range for this event of 12,835–12,735 Cal B.P. at 95% probability. This range overlaps that of a peak in extraterrestrial platinum in the Greenland Ice Sheet and of the earliest age of the Younger Dryas climate episode in six proxy records, suggesting a causal connection between the YDB impact event and the Younger Dryas.” (Kennett et al. 2015)

“The fact remains that the existence of mammoths, mastodons, horses, camels, dire wolves, American lions, short-faced bears, sloths, and tapirs terminated abruptly at the Allerød-Younger Dryas boundary.” The Quaternary megafaunal extinction is sometimes attributed to the ‘prehistoric overkill hypothesis’, although “The megafaunal extinction and the Clovis-Folsom transition appear to have occurred in <100 years, perhaps much less”. (Haynes 2007)

Many, most or perhaps all boulder fields worldwide of secondary impact origin may date to the ‘YD impact’, 12.8 ± 0.15 ka, which is suggested here to have formed the 450 km Nastapoka arc (impact basin) of lower Hudson Bay. But impact boulder fields and perhaps the associated Quaternary megafaunal extinction event itself may be mostly attributable to widely-disbursed secondary impacts from material sloughed off of the YD comet in its passage through Earth’s atmosphere. So while our atmosphere may protect us from most cosmic rays and small meteoroids, it may greatly exacerbate the harm to lifeforms in large icy-body impacts, due to widely-disbursed secondary impacts from comet material sloughed off in Earth’s atmosphere.

450 km diameter Nastapoka arc of Lower Hudson Bay

450 km diameter Nastapoka arc of Lower Hudson Bay

The vast 4 continent distribution of YD impact artifacts raises the question of whether fragmentation responsible for impact boulder fields et al. occurred in the atmosphere alone, or whether an earlier fragmentation occurred from a close encounter with one of the giant planets of the outer solar system.

Carolina bays:
The orientation of Carolina bays appear to point to two origins, lower Hudson Bay and Lake Michigan. (Firestone 2009) The orientation of elliptically-shaped Carolina bay appear to point back to two source locations, one in the lower Hudson Bay area (Nastapoka arc) and the second one pointing to circa Lake Michigan. Firestone et al. suggest the bays were formed by chunks of the Laurentide ice sheet, lofted into 100s to 1000s of kilometer trajectories by a dual impact (or airburst) on or over the ice sheet at those two locations. While dating the Carolina bays is difficult and controversial, the bays contain elevated levels of spherules common in the YD-impact black mat. Dual impacts on the ice sheet suggests that at least one chunk of the comet fragmentation was sufficiently sizable to loft sizable icebergs into trajectories of 100s of kilometers, but the Lake Michigan impact was apparently of insufficient size to create a Nastapoka arc counterpart.

Icy-body comet impacts are suggested here to form impact basins, whereas rocky-iron meteorites are known to form impact craters. Relatively-compressible ices are suggested to clamp the impact shock wave pressure below the melting point of silicates, largely precluding impact melt rock. PdV compression of ices may also clamp the shock wave pressure below the pressures necessary to form shatter cones, shocked quartz and high-pressure polymorphs like coesite, masking icy-body impact structures from identification as such. For instance, ices that undergo 10 times the dV compression of silicates will absorb 10 times the work energy from the impact shock wave, instantly soaring to 1000s of Kelvins which quickly melt embedded nebular dust and terrestrial sediments into molten microscopic silicate spherules. If ice compression lowers the impact power, then conservation of energy dictates that the impulse duration is commensurately extended. And a blunted but extended impact impulse may distort Earth’s crust into basins (in large impacts) rather than excavating craters, as rocky-iron meteorites are known to do. So while rocky-iron impacts may act like the sharp blow of a ball peen hammer, forming distinctive impact craters with distinctive overturned target rock, icy-body impacts may act more like the dull thud of a dead blow hammer, depressing the ground into a spherical impact basins, like Nastapoka arc. And the sustained shock wave duration of icy-body impacts (during the compression and rebound decompression of compressible ices) may tend to clamp the target rock in place, largely preventing the signature overturned rock of crater rims and the central peak rebound of complex craters.

Secondary impact boulder fields:

A number of boulder fields in the Appalachians are attributed to the suggested exaggerated freeze and thaw cycle toward the end of the last glacial period, but this gradualism approach can not account for unusual surface features in suggested impact boulder fields, nor the ability of ability of 2 diabase (Ringing Rock) boulder fields to resonate or ‘ring’ when struck sharply.

Impact boulder fields concentrated by downhill debris flows require a degree of incline to concentrate the boulders and to drain the boulder field to prevent burial by sedimentation over the intervening millennia; however, catastrophic impact boulder fields should be capable of flow down a much shallower grade than ‘talus-slope boulder fields’ formed by more gradual processes. The shear-thinning properties of phyllosilicate slurries in catastrophic impacts may lubricate a downhill pyroclastic flow or debris flow, stacking boulders many boulders deep.

Eastern Pennsylvania is suggested to have at least 3 impact boulder fields, with two Ringing Rock boulder fields composed of diabase and the Hickory Run boulder field, in Hickory Run State Park, composed of sandstone/quartzite. The sandstone boulders that compose Blue Rocks boulder field (near Hawk Mountain, Berks County Park) are too eroded to show surface scouring, which may indicate softer boulders, and/or boulders older than End Pleistocene, so the Blue Rocks boulder field can not be positively attributed to an impact origin. Talus-slope boulder fields are common along the ridges of the Appalachians. In general, boulder fields in rugged terrain and particularly along mountaintop ridge lines should be dismissed as unlikely impact boulder fields, and in any case, distinctive surface surface-feature scouring is necessary to affirm an impact origin.

The suggested Lake Michigan impact extrapolated from Carolina bay orientations likely had the protection of perhaps as much as a kilometer of the Laurentide ice sheet, whereas the three suggested impact boulder fields in Pennsylvania were presumably below the Late Wisconsinan extent of the ice sheet (although Hickory Run State Park is mapped as covered by the last substage of the Wisconsinan Stage of the ice sheet on the USGS geologic map of Pennsylvania). Could an impact have flash melted a thin tip of ice sheet, lubricating the resulting debris flow that formed Hickory Run boulder field, explaining its well-rounded boulders from extensive tumbling? The approach direction of the comet, however, is somewhat problematic, since the terrain falls away to the northwest in Ringing Rocks Park, Bucks County PA, whereas the terrain rises to the northwest of the Hickory Run boulder field.

Scoured surface features:
Pockmark, striation and pot hole surface features on boulders in impact boulder fields are suggestive of sandblasting or water-jet cutting in an industrial setting. So while a massive impulse may be necessary to fracture the bedrock into boulders, exposure to high-velocity streams of material are necessary to create the observed scoured surface features.

Extensive surface scouring of a sandstone boulder in Hickory Run boulder field

Extensive surface scouring of a sandstone boulder in Hickory Run boulder field


Circular feature scoured into the surface of a sandstone boulder in Hickory Run boulder field

Circular feature scoured into the surface of a sandstone boulder in Hickory Run boulder field

Pockmarks and (comet-spatter) rock scale on a quartzite boulder in Hickory Run boulder field

Pockmarks and (comet-spatter) rock scale on a quartzite boulder in Hickory Run boulder field


Pockmarks and on a sandstone boulder in Hickory Run boulder field

Pockmarks and on a sandstone boulder in Hickory Run boulder field

Impact boulder field boulders will exhibit more or less rounding of corners from a greater or lesser degree of downhill debris flow tumbling from their impact origin. The boulders in Hickory Run boulder field are significantly more rounded than those in the two Ringing Rocks boulder fields, suggesting more abrasive tumbling over a greater distance by a larger mass of boulders. The ‘terrain’ feature of Google maps is not sufficiently sensitive to positively identify secondary impact locations, even for the large Hickory Run boulder field, so it’s likely that impact fracturing by secondary impacts is only a few boulders deep at most. The size and width of 3 known impact boulder fields suggest an impact footprint on the order of 10s of meters across, as a working hypothesis. Similarly, secondary impacts on low ground may also be below the resolution of the terrain feature of Google maps. Even so, perfectly-round water-filled secondary-impact features on low ground should jump out on the satellite imagery of ‘Google Earth’, unless atmospheric fragmentation of sloughed off material typically distorts the impact footprint into non-circular shapes, and/or if secondary impacts on low ground on the order of 10s of meters will have filled in with sediment in the intervening 12,800 years.

Comet-spatter rock scale:
Additionally, the most erosion resistant of boulder-field boulders and stream cobbles may still retain secondary ‘comet spatter–’on one side only–in the form of rock scale, although boulder field boulders may exhibit more than 180° coverage due to being briefly airborne at some point. Most apparent rock scale is actually lichen, particularly if the apparent rock scale has a rounded perimeter, and most comet spatter appears to be orange or brown, whereas lichen is often white or jet black. And lichen like comet spatter will typically appear on one side only of a rock or boulder, since the algae or cyanobacteria component of lichen requires sunlight for photosynthesis. A weathering rind is another look alike, and weathered diabase boulders often exhibit a yellow or orange weathering rind that may simulate comet spatter. Ideally a cobble or boulder with a maple-leaf-shaped deficit, or some other recognizable shape which acted as a comet spatter mask, will reveal itself to a persistent or fortuitous observer.

Heavy (comet-spatter) rock scale on Stony Mountain boulder, north of Indiantown Gap, Pennsylvania (W 76.62908, N 40.48301)

Heavy (comet-spatter) rock scale on Stony Mountain boulder, north of Indiantown Gap, Pennsylvania (W 76.62908, N 40.48301)


(Comet-spatter) rock scale on a quartzite boulder in Hickory Run boulder field

(Comet-spatter) rock scale on a quartzite boulder in Hickory Run boulder field

(Comet-spatter) rock scale on a quartzite boulder in Hickory Run boulder field

(Comet-spatter) rock scale on a quartzite boulder in Hickory Run boulder field

Shoe stone with comet spatter:
A greywacke ‘shoe stone’ shaped like a human slipper was found in the Susquehanna River in Millersburg, PA. Most of the shoe stone is natural, but the sole has evidence of human modification, evidently to make it into a more-perfect slipper shape. And the stone has raised brown nodules on ‘one side only’, suggesting the stone was Clovis to have been exposed on the day of the comet, and indeed a small amount of suggested comet spatter overlays the tooled surface of the sole.

Left side of (Clovis) shoe stone from the Susquehanna River, Millersburg, PA, showing (comet-spatter) raised brown nodules on one side only

Left side of (Clovis) shoe stone from the Susquehanna River, Millersburg, PA, showing (comet-spatter) raised brown nodules on one side only

Right side of (Clovis) shoe stone from the Susquehanna River, Millersburg, PA, showing no (comet-spatter) nodules on right side

Right side of (Clovis) shoe stone from the Susquehanna River, Millersburg, PA, showing no (comet-spatter) nodules on right side

Bottom of (Clovis) shoe stone from the Susquehanna River, Millersburg, PA, showing brown (comet-spatter) nodules over (Clovis) tool marks, circled in red, where the rock has apparently been modified to appear more slipper like

Bottom of (Clovis) shoe stone from the Susquehanna River, Millersburg, PA, showing brown (comet-spatter) nodules over (Clovis) tool marks, circled in red, where the rock has apparently been modified to appear more slipper like

Cup marks in cairns in the British Isles:
In addition to North American boulder fields, cup marks in boulders from cairns in the British Isles are also suggested to be of secondary impact origin, where the associated boulder fields were presumably long ago scavenged for building materials

Cup marks in a clava cairn boulder at Balnauran of Clava, near Inverness, Scotland

Cup marks in a clava cairn boulder at Balnauran of Clava, near Inverness, Scotland

Ringing Rocks impact boulder fields:
Pennsylvania has two Ringing Rock boulder fields, Ringing Rocks Park in Lower Black Eddy, PA and Ringing Rocks Park in Pottstown, PA 40.270647, -75.605616. ‘Ringing Rocks’ refers to the propensity of diabase boulders within the two Ringing Rocks boulder fields to resonate or ‘ring’ at a characteristic frequency when struck sharply with a hard object, whereas diabase boulders elsewhere do not ring. Apparently, the super-high-pressure impact shock wave stressed the surface of diabase boulders, like prestressed glass, imparting the ability to resonate when struck. Additionally, Ringing Rock boulders variably exhibit scoured surface features, with uniformly ‘young’ subconchoidal fractured surfaces that exhibit very-shallow surface decomposition (exfoliation), indicating a relatively-young age. For Southeastern Pennsylvania to have two Ringing Rock impact boulder fields composed of diabase boulders, suggests that a large number of other boulder fields are also of impact origin, since diabase forms only a very small fraction of the terrain in Southeastern Pennsylvania.

Striations in a diabase boulder in Ringing Rocks boulder field

Striations in a diabase boulder in Ringing Rocks boulder field

Pot holes scoured in a diabase boulder in Ringing Rocks boulder field

Pot holes scoured in a diabase boulder in Ringing Rocks boulder field

Striations scoured in a diabase boulder in Ringing Rocks boulder field

Striations scoured in a diabase boulder in Ringing Rocks boulder field

Pot holes scoured in a diabase boulder in Ringing Rocks boulder field

Pot holes scoured in a diabase boulder in Ringing Rocks boulder field

Deeply-scoured surface of a diabase boulder in Ringing Rocks boulder field

Deeply-scoured surface of a diabase boulder in Ringing Rocks boulder field

Pockmarks scoured into the surface of a diabase boulder in Ringing Rocks boulder field

Pockmarks scoured into the surface of a diabase boulder in Ringing Rocks boulder field

Deep striations scoured into the surface of a diabase boulder in Ringing Rocks boulder field

Deep striations scoured into the surface of a diabase boulder in Ringing Rocks boulder field

Deeply-scoured surface of a diabase boulder in Ringing Rocks boulder field

Deeply-scoured surface of a diabase boulder in Ringing Rocks boulder field

Pockmarks and striations scoured into the surface of a diabase boulder in Ringing Rocks boulder field


Firestone, Richard B., 2009, The Case for the Younger Dryas Extraterrestrial Impact Event: Mammoth, Megafauna, and Clovis Extinction, 12,900 Years Ago, Journal of Cosmology, 2009, Vol 2, pages 256-285

Haynes Jr., C. Vance, 2007, Younger Dryas “black mats” and the Rancholabrean termination in North America, Proceedings of the National Academy of Sciences, vol. 105 no. 18

Kennett, James P. et al., 2015, Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 Cal B.P. for Younger Dryas boundary on four continents, Proceedings of the National Academy of Sciences, vol. 112 no. 32

Wittke, James H. et al., 2013, Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago, Proceedings of the National Academy of Sciences, vol. 110 no. 23



The orbital velocity of the earth makes a dramatic difference in the kinetic energy of comet impacts. For a comet falling from infinity toward the sun at earth’s orbit, the ratio of kinetic energy between comets hitting earth head-on in its orbit around the sun and those catching up with earth is a factor of 19, but most fall somewhere in between. (This calculation factors in earth’s gravity.)

Earth escape velocity: 11.2 km/s
Earth, orbital velocity: 29.8 km/s
Body falling from infinity towards the sun to a distance of 1 AU: 42.2 km/s (calculated from gravitational potential energy and checked by comparing velocity falling from infinity to the diameter of the sun with the escape velocity of the sun)

Running into the earth head on in its orbit:
42.2 km/s + 29.78 km/s = 71.98 km/s
71.98 * 71.98 + 11.19 * 11.19 = 5181.12 + 125.21 = 5306.33 km^2/s^2 (specific energy)

Catching up with earth in its orbit:
42.2 km/s – 29.78 km/s = 12.42 km/s
12.42 * 12.42 + 11.19 * 11.19 = 154.26 + 125.21 = 279.47 km^2/s^2 (specific energy)

Specific kinetic energy ratio between hitting the earth head-on and catching up with earth in its orbit:
5306.33 / 279.47 = 18.99

Dwarf comets having fallen through Proxima’s 3:1 ‘resonant nursery’ resonance will orbit CCW in the Oort cloud like the planets. If the solar-system barycenter (SS-barycenter) acts as an aphelia attractor that pins Oort cloud orbits in its vicinity to the SS-barycenter, then the 73.6 Myr orbit of the Sun around the SS-barycenter will align these pinned orbits with the Galactic core twice per orbit, causing the tidal effect of the Galactic core to gradually reduce their perihelia by extracting angular momentum from the orbits until they dip into the planetary realm of the inner solar system. And the dwarf planets most likely to collide with Earth will have perihelia on the order of 1 AU. These objects would catch up with Earth in its CCW orbit and impact at almost the lowest possible speed.

Finally, comet ice may undergo endothermic chemical reactions (ECRs) in comet impacts, mostly clamping the impact shock-wave pressure below the melting point of rock.


This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s