Snowball Solar System

This work in progress is an alternative conceptual hypothesis for:
- Planet and planetesimal formation,
- Aqueous differentiation of TNO, comet and dwarf-planets, and the
- Formation of continental tectonic plates composed of authigenic/plutonic dwarf-planet cores


Four star/planet/planetesimal formation mechanisms and their object types:

1) Spin-off planets and moons from protostars and protoplanets:
Gravitationally-collapsing gas and dust clouds may form bar-mode instabilities which contain excess angular momentum. When the central temperature reaches 2000 K, endothermic molecular-hydrogen dissociation absorbs heat energy, promoting gravitational collapse and the formation of a core. Core collapse isolates the bar-mode arms which may become gravitationally bound within their own Roche spheres. Protostar collapse may typically spin off solitary gas-giant protoplanets while smaller protoplanets may spin off pairs of protomoons (or two pairs of protomoons in the case of binary protoplanets like binary proto-Jupiter).
Example: Saturn, Jupiter and many planemo moons, including Jupiter’s Galilean moons; Io Europa Ganymede and Callisto
2) Super-Earths:
Terrestrial planets formed by ‘hybrid core accretion’ from the core accretion of planetesimals formed by gravitational instability (GI) at the inner edge of accretion disks around solitary or binary stars. Cascades of super-Earths may form from the inside out as each new planet sequentially clears its orbit.
Example: Uranus, Neptune and Mars
3) Merger planets—stellar-merger spin-off planets:
Likely spun off similar to protostar spin-off planets, at a stellar stage during spiral-in, binary stellar mergers, similarly isolating high-angular-momentum bar-mode arms. Merger planets may suffer significant volatile depletion while in their vulnerable pithy protoplanet phase.
Example: Venus and Earth
4) Gravitational-instability(GI)/disk-instability:
A majority of companion stars and solitary gas planets may form by disk instability, particularly, gas planets and companion stars with the most typical orbital separations of ~ 1 AU for gas planets and 30 AU for companion stars around G-type stars like our Sun. Additionally, ‘planetesimals’ may form by gravitational instability in high-pressure resonances.
Example: Titan?, trans-Neptunian objects (TNOs), comets, asteroids and perhaps our former (hypothesized) companion star

GI fragmentation (bifurcation) and binary-binary resonant coupling:

Stars, planets, moons and planetesimals (comets, asteroids and TNOs) formed by gravitational instability may typically fragment (bifurcate) during gravitational collapse due to excess angular momentum. Subsequently, resonant binary-binary (core-collapse) coupling between binary pairs may tend to ‘evaporate’ smaller binary pairs at the expense of the orbital energy and angular momentum of larger binary pairs, particularly, perhaps, when the relative mass ratio between resonantly-coupled binaries lie within a certain range.

Solar System Formation and Dynamics:

- The binary separation of our hypothesized former binary-Sun may be evident in the orbits of the spin-off planets Jupiter and Saturn, with Jupiter spinning off from the larger stellar component and Saturn spinning off from the smaller component.
- Uranus and Neptune may be super-Earths formed by core accretion of TNOs ‘condensed’ by GI at the inner edge of the circumbinary protoplanetary disk. Uranus and Neptune cleared their orbits of left-over TNOs and dwarf planets into the Kuiper belt and scattered beyond.
- A binary companion star beyond our binary-Sun may have condensed its own circum-quaternary TNOs or more likely, shepherded circumbinary TNOs outward as it spiraled out due to core-collapse perturbation from binary-Sun.
- As the Sun spiraled inside the orbit of Jupiter, a second spate of planetesimal condensation may have formed ‘super-Earth’ Mars by hybrid core accretion, including, perhaps, the left-over icy-body asteroids, including Ceres.
- Binary-Sun may have spiraled in and merged in a luminous red nova (LRN) at 4,567 Ma, forming f-process short-lived isotopes (including 26Al and 60Fe) and stable alpha-process isotopes (including 16O). CAIs may have condensed from polar jets while a 3-million year flare-star phase of the Sun may have melted accretionary dust particles to form chondrules.
- Binary Venus and trinary Earth may have spun off during the merger and coupled with the solar magnetic field to spiral out to their current orbits.
- Asteroids may have condensed by GI from LRN dust at the magnetic corotation radius of our flare-star Sun, forming Mercury by hybrid core accretion. Subsequent orbit clearing may have evaporated most remaining asteroids out into Jupiter’s inner resonances.
- Oort cloud comets may have condensed beyond binary-companion’s circum-trinary orbit, around 138 AU from the Sun which it shepherded into the Oort cloud over the next 4 billion years with its orbit inflation fueled by converting binary-companion orbital energy into an increasingly eccentric orbit around the solar-system barycenter (SSB).
- The highly-eccentric binary-companion SSB orbit may have perturbed comets, ‘extended-disk TNOs’ and dwarf-planet accretions outward or inward due to the fluctuating heliocentric/SSB-barycentric orbits of planetesimals crossed by the binary companion star. In essence, binary-companion attempted to clear its orbit which constituted the entire inner Oort.
- The binary components of the companion star may have spiraled and merged at 542 Ma, initiating the Cambrian Explosion of life in dwarf-planet oceans and the Great Unconformity on Earth.
- At some time in the ‘recent’ past, perhaps measured in ones or tens of millions of years, a passing star may have given our former companion star escape velocity from the Sun.

Aqueous Differentiation of Planetesimals:

When binary trans-Neptunian objects (TNOs) composed of highly-oxidized (Type I) presolar material spiral in and merge from external perturbation, ‘contact-binary’ heating melts salt-water oceans in their cores, initiating ‘aqueous differentiation’.  Precipitation of mineral grains and their growth through crystallization eventually cause the mineral grains to fall out of suspension in microgravity oceans, forming sedimentary cores.  Diagenesis of sedimentary cores cause ‘circumferential folding’, and hydrothermal fluids expelled during diagenesis precipitate to form hydrothermal mineral grains, forming schist, quartzite and carbonate-rock mantles over gneiss-dome cores.  By comparison, (Type II) LRN-debris comets composed of condensed solar plasma with high Gibbs free energy (highly chemically reduced?) condensed further out than TNOs and at cooler temperatures.  Thus comets may contain more volatile chlorine than TNOs and dwarf planets, forming saltier aqueously-differentiated oceans that precipitate a higher ratio of orthoclase to plagioclase (a higher percentage of pink potassium feldspar), forming authigenic A-type Rapakivi granite cores or authigenic, layered S-type granite cores.  Mergers of Type II comets with Type I dwarf planets, likely occur at the super-high planetesimal density of the SSB which may result in such violent chemical reactions as to melt sedimentary comet cores to form plutonic I-type.

Extinction Events and Continental Tectonic Plates:

- Our former companion star may have fostered super concentrations of planetesimals, perhaps at the SSB, promoting hybrid core accretion of dwarf planets, and causing perturbations that cause binary planetesimals to spiral in and merge, initiating aqueous differentiation.
- When long-period comets, TNOs and dwarf planets spiral down into the inner solar system, their aphelia have about 41% greater velocity than planets and moons in more circular orbits. This relatively high velocity greatly reduces the effective impact cross section, particularly with smaller worlds with escape velocity below the 41% differential orbital velocity. Additionally, planets in the most circular orbits tend to overlap better with planetesimals with similar aphelia and inclination, so both mechanisms make Venus and Earth far better terrestrial-world targets than Mercury and Mars, and vastly better targets than moons in spiral orbits around the Sun.
- Comets, TNOs and dwarf planet impacts cushioned by PdV heating of relatively-compressible ices may largely clamp the impact shock-wave pressure below the melting point of differentiated planetesimal cores and terrestrial target rock, but compressional heating may reach temperatures that endothermically convert short-chain hydrocarbon ices into long-chain hydrocarbons, forming most of the petroleum and much of the coal on Earth.
- Aqueously-differentiated dwarf-planets cores from extinction-level impacts may be the origin of the continental tectonic plates on Earth and the continents on Venus.



- Close Binary:
‘Hard’ binary pairs (planetesimals, planets, moons or stars) that tends to spiral in due to external perturbation, with close-binary orbits tending to become progressively harder over time and often eventually merging to become solitary objects.

- Wide Binary:
‘Soft’ binary pairs (planetesimals, planets, moons or stars) that tend to spiral out due to external perturbation, with wide-binary orbits tending to become progressively softer over time.

- GI:
Gravitational instability in which gas and dust collapse gravitationally (condense) under pressurized conditions to form planetesimals, planets and stars. Many or most GI condensed objects fragment due to excess angular momentum, forming binary pairs.

- YSO:
Young stellar object, comprising protostars (no core) and pre-main sequence stars (cored). ‘Cores’ form at about 2000 K—the temperature at which hydrogen dissociates—defining the transition from protostars to pre-main sequence stars. The core transition is at odds with the standard definition.

- SSB:
‘Solar-system barycenter’. Hierarchical quadruple star systems composed of two close binaries in a wide-binary separation will have two close-binary star barycenters as well as an overall (wide-binary) SSB.

- LRN (LRNe plural):
Luminous red nova, a stellar explosion with a luminosity between that of a nova and a supernova, thought to be caused by the merger of two close-binary stars that spiraled in (or perhaps the merger between a planet and a star). LRNe may only occur in main-sequence stars, not YSOs, perhaps explaining the lack of observed LRNe despite the relatively large proportion of hypothesized stellar mergers in exoplanet stellar systems.

- Fragmentation/Bifurcation:
Protostar fragmentation (bifurcation) during gravitational collapse due to excess angular momentum generally form binary stars. Subsequent fragmentations of the smaller component with the highest specific angular momentum may form trinary or quadruple systems. Fragmentation is hypothesized to occur in the protostar stage of star formation before forming a core.

- TNO:
Circa 100 km Dia (trans-Neptunian objects) condensed by GI from the protoplanetary disk; however, the term may generically used to include presolar planetesimals formed elsewhere in the solar system.

- Planetesimals:
The most generic term for anything smaller than a planet, not specifically a moon. The term may apply to (Type I) presolar TNOs and (Type II) LRN-debris asteroids and comets. The term may at times be stretched to include dwarf planets formed by hybrid accretion of smaller planetesimals formed by GI.

- Dwarf Planets:
Objects formed by ‘hybrid accretion’ of smaller planetesimals condensed by GI. Dwarf planets may mix Type I presolar and Type II LRN debris planetesimals.

- Comets:
Planetesimals condensed by GI far from the Sun at low temperatures from Type II, LRN-debris highly-volatile ices and dust.

- Asteroids:
High-density volatility-depleted planetesmials condensed by GI close to the Sun at high temperatures near the Sun from Type II, LRN-debris dust. Asteroids may thermally differentiate due to short-lived f-process radionuclides formed by nucleosynthesis in stellar mergers. Larger asteroids may form by hybrid accretion of smaller planetesimals.

- Chondrites:
Medium-density volatility-depleted planetesimals condensed by GI that have not thermally differentiated. CI chondrites may be Type I presolar, but chondrites with chondrules are Type II LRN debris.

- Type I:
Presolar gas, ice and dust with low Gibbs free energy from long exposure to interstellar cosmic rays.

- Type II:
LRN gas, ice and dust with high Gibbs free energy from short exposure to radiation, essentially condensed solar plasma. Type II material variously enriched in f-process radionuclides and alpha-process stable isotopes formed in stellar-merger nucleosynthesis.

- Core Collapse:
May take two forms, orbit clearing and resonant perturbation coupling. In orbit clearing, high mass planets tend to clear their orbits of lower-mass planetesimals by ‘evaporating’ them into higher orbits. In closed-system resonant coupling, larger-mass close-binary stars may evaporate lower-mass companion stars into higher orbits, transferring energy and angular momentum from close-binary orbits to raising the wide-binary separation. Finally, external perturbation (such as the tidal gravity of the Galactic core) may ‘evaporate’ stars and planetesimals outward or may create torque which causes binary stars to spiral out as their close-binary components spiral in.

- IOC:
‘Inner Oort cloud’, the doughnut-shaped 2,000 – 5,000 AU inner edge to 20,000 AU outer edge of the Hills cloud, hypothesized to have formed from comets condensed beyond the Sun’s former binary Companion in the extended scattered disk and then shepherded into the IOC by the Companion’s outer ‘shepherding’ resonances where they fell through the resonances at orbital periods proportional to their mass.

- OOC:
Outer Oort cloud the spherical cloud of comets 20,000 AU to 50,000 AU (or more) beyond the IOC perturbed into spherical orbits largely by the Companion or Jupiter as orbits transition from heliocentric to barycentric orbits and/or vice versa. Perturbation into the OOC may also occur from beyond by passing stars, Galactic tides and etc.

- Extended scattered disc (ESD):
A population of ‘detached objects’ (DOs), not gravitationally influenced by Neptune, with perihelia greater than 50 AU and aphelia less than about 1,500 AU and a semi-major axis in the range of 150-1,500 AU

- Aqueous Differentiation:
When binary planetesimals (TNOs and comets) spiral in and merge to form contact binaries, the energy released may cause ‘aqueous differentiation’, melting salt-water oceans in their cores. Precipitation of mineral grains may form sedimentary cores which diagenesis compacts with heat and pressure. Finally, lithification and metamorphism may occur as the pressure builds over the core due to the expansion of the salt water ocean as it freezes over.

Our solar system may have formed from a solitary protostar with above average angular momentum that fragmented 3 times to form a quadruple star system. Core collapse reduced it to a trinary star system when the former binary solar components merged at 4,567 Ma. Our former trinary star system may have been reduced to a binary system about 4 billion years later when the binary components of our former Companion star merged at 542 Ma. Finally, the Companion star drifted out of the solar system, perhaps several million years ago.

Protostar Fragmentation and Stellar Core Collapse:
Our original protostar may have fragmented 3 times in succession due to excess angular momentum, bifurcating progressively smaller protostars, the smallest one or two of which may have been brown dwarf sized. Hierarchy emerged from the 4 stellar components (in our former quadruple star system) to form two close-binary stars with a wide-binary separation. Then core-collapse coupling progressively increased the wide-binary separation at the expense of the energy and angular momentum of the two largest ‘solar’ components, causing the binary components of the Sun to spiral in and form a contact binary.

Spiral-in Contact Binary Stars (binary-Sun):
When Roche spheres overlap in a contact binary, the smaller stellar component may siphon off the the atmosphere of the larger component until their masses are nearly equalized. Further spiral in forms a contact binary in which the stellar components are orbiting inside an expanded stellar envelope, and the drag of orbiting inside the atmosphere may create a super-intense solar wind streaming from the common envelope. But super-intense solar wind streaming away from a common envelope would only carry away something near average specific angular momentum which would not promote further spiral in and might merely tend to circularize the orbits of the components by ridding the doomed components of excess energy.

Tidal gravity may elongate the stellar components in their mutual axis, creating a bar-mode instability.

‘Merger Planets’ Earth and Venus:
Working backwards from Earth’s terrestrial fractionation line with its ∆17O lying below assumedly-presolar Mars on the 3-oxygen isotope plot suggests a stellar origin for Earth with LRN nucleosynthesis alpha-process enrichment (oxygen-16 enrichment) and by twin planet symmetry, for Venus as well.

Tidal elongation along the solar component axis resulting in a bar-mode instability may be the mechanism for pinching off dual, symmetric high angular-momentum masses, somewhat analogous to the formation of spin-off planets by protostars.

But was the angular momentum transfer catastrophic in a magnetic event or gradual in resonant binary-binary coupling? Even assuming the original pinched off masses were Saturn-sized or larger, the case for gradual angular-momentum transfer in binary-binary coupling seems weak because of the mismatch in masses in the same way that binary Sun did not lift binary TNOs out of the cold classical Kuiper belt. A catastrophic mechanism may involve twisting magnetic field lines as dual bar-mode arm tips pinch off and fall behind the solar components. The energy accumulation in the twisted magnetic field may have hurled the pinched-off plasma masses tangential to their orbit, raising them into very nearly their current heliocentric separations. And the angular momentum transfer may have allowed the solar components to sink and merge in the solar LRN.

Let ‘merger planets’ designate planets hurled off from stellar mergers and ‘spin-off planets’ designate gas giant planets condensed around protostars during core formation.

So the working model of merger planets will be gravitationally-bound plasma masses magnetically hurled out to nearly their ultimate stellar-centric orbits. Initially, Venus and Earth expanded to (over)fill their respective Roche spheres, with expansive cooling condensing mineral grains which gravitationally sank to form cores in the twin planets.

The red giant phase of LRN M85OT2006-1 would have reached the Kuiper Belt and perhaps well into it with a size estimated as R = 2.0 +.6-.4 x 10^4 solar radii with a peak luminosity of about 5 x 10^6 solar. (Rau et. al. 2007) “Previously published line indices suggest that M85 has a mean stellar age of 1.6+/-0.3 Gyr. If this mean age is representative of the progenitor of M85 OT 2006-1, then we can further constrain its mass to be less than 2 Msolar.” (Ofek et al. 2007) So the red-giant phase of the solar LRN would have enveloped the terrestrial planets, orbiting inside the greatly-expanded solar atmosphere and rapidly volatilizing Venus and Earth through the enormous surface of their Roche spheres.

A combination of passive diffusion through merger-planet Roche spheres and active diffusion by plasma from the red-giant phase results in severe volatile depletion and corresponding mass loss, resulting in the ‘terrestrial volatility trend’ on Earth.

Excess angular momentum in the gravitationally contracting cores of Earth and Venus likely caused them to fragment (bifurcate) with Earth fragmenting twice to form binary Venus and trinary Earth. Subsequent perturbation caused the binary components to spiral in and merge as Earth’s Moon spiraled out during the terrestrial core-collapse process. The merger of binary Earth and Venus may have formed polar jets which dissipated excess energy and ejected vaporized metallic core material that condensed in Jupiter’s inner resonances to form the highly-reduced enstatite chondrites which lie on the terrestrial fractionation line.

Io and Europa may be ‘merger moons’ which may correspond to Venus and Earth as merger of Jupiter’s former binary components magnetically hurled the proto-moons into something near their present orbits. The additional perturbation of the solar system barycenter (SSB) near Saturn’s orbit may have caused binary merger moons to spiral out and separate rather than spiraling in and merging, so Venus at the Sun and Io at Jupiter may correspond to Mimas and Tethys at Saturn, while Earth at the Sun and Europa at Jupiter may correspond to Rhea and Iapetus at Saturn. Let ‘merger moons’ designate planets moons magnetically hurled off from binary spiral-in mergers of binary planetary components.

Planetesimal ‘Condensation’ by Gravitational Instability (GI):
GI in the planetesimal range (1-100 km) may require elevated ice-and-dust to gas ratios and pressurized conditions. The most typical location for planetesimal condensation may be at the pressure dam just beyond the magnetic corotation radius of solitary stars or at the pressurized inner edge of circumbinary accretion disks around binary stars. Debris disk condensation may allow for condensation of smaller planetesimals than protoplanetary disks due to elevated dust-to-gas ratios and perhaps also due to the chemical stickiness of the dust and ice, forming millimeter- to centimeter-scale accretions which elevate the debris disk density, forming comets down to 1 km in size, whereas protoplanetary planetesimals may be more on the order of 100 km, like many of the TNOs. If centimeter-scale accretions formed at 9.6 AU in CB chondrites at Saturn, then perhaps comets contain larger decimeter-scale accretions, accounting for the small 1 km size of the smallest comets condensed by GI. Shock waves may also promote GI formation in locations other than the inner edge of accretion disks around solitary and binary stars.

The Hungaria asteroids, mostly E-type which lie on the TFL are below the 4:1 resonance with Jupiter at low eccentricity and inclinations of ranging from 16° to 34°. Only high inclinations will have survived perturbations with Mars over 4 billion years, but averaging 16° and 34° gives 25°, which is close to the 23° tilt of Earth, all suggesting that enstatite chondrites are formed from terrestrial core material that spun off from Earth’s binary merger which were stopped and condensed by GI at Jupiter’s 4:1 resonance.

‘Spin-off Planets’ Jupiter and Saturn:
When the internal temperature of the binary molecular-gas protostars reach 2000 K, the endothermic dissociation of molecular hydrogen into atomic hydrogen may promote gravitational collapse and core formation (transitioning from a protostar YSO to a pre-main sequence YSO) through endothermic clamping of the core temperature at 2000 K until the central hydrogen had all converted from diatomic to monotonic hydrogen.

Stellar core formation would have isolated the outer protostar gas due to its excess angular momentum which may have gravitationally collapsed to form a hot Jupiter around the larger A-Sun component and a hot Saturn around the smaller B-Sun component. Excess angular momentum of the collapsing proto-Jupiter and proto-Saturn in turn would likely have caused fragmentation, forming binary Jupiter and binary Saturn (or trinary Saturn with Titan as its trinary component similar to Earth’s trinary component, the Moon).

Let ‘spin-off planets’ designate gas-giant planets ‘condensed’ around YSOs during core formation.

At 2000 K internal temperatures, core formation in Jupiter’s binary components may have spun off Ganymede around the larger A-component and Callisto around the smaller B-component. Likewise, Saturn may have spun off Enceladus around the larger A-component and Dione around the smaller B-component. Let ‘spin-off moons’ designate moons formed around proto-planet components during core formation.

Then let ‘hot moons’ designate spin-off moons condensed around solitary protoplanets during core formation as ‘Hot Jupiters may be spin-off planets condensed around solitary YSOs during core formation.

Binary-binary coupling between binary-Sun and binary-Companion in the extended scattered disk may have caused the energy and angular-momentum transfer that caused the solar components to spiral in and merge, leaving Jupiter and Saturn behind in their current heliocentric orbits. Conservation of planetary angular momentum would have caused the gas-giant planets to spiral out from their solar components as the components spiraled in. When the planets encountered the Lagrangian points between the two solar components, the planets transitioned from circumprimary (Jupiter) and circumsecondary (Saturn) orbits into circumbinary orbits. Saturn and Jupiter’s moons likewise transitioned at the planetary LaGrange points into circumbinary orbits.

Binary Jupiter may have merged prior to the solar merger at 4,567 Ma, but Saturn may have merged afterward, perhaps spinning off core material which condensed into ‘young’ (4,567.2 +/- 0.7 Ma, Krot et al. 2005) CB chondrites in Jupiter’s inner resonances with large centimeter-sized chondrules.

Super-Earth planets Uranus and Neptune:
Uranus and Neptune may be ‘hybrid accretion’ super-Earths composed of presolar trans-Neptunian objects (TNOs) condensed by gravitational instability (GI) at the pressurized inner edge of the circumbinary protoplanetary disk. When Uranus reached a critical size by hybrid accretion of TNOs it largely cleared its orbit of TNOs and dwarf planets, but since the mass of remaining planetesimals was larger than Uranus itself, Uranus sank into a lower orbit with the effort, causing its 98° axial tilt. Hybrid accretion similarly formed Neptune also cleared its orbit of the remaining TNOs and dwarf planets into the Kuiper belt beyond, resulting in its lower 28° axial tilt. (Actually, planetary axial tilts may be a combination of their original formational tilt plus any subsequent reorientation of the solar system plane due to Jupiter and other causes.)

Super-Earth Mars:
The twisted terrain in Hellas Basin and in several Chasmas suggest aqueously-differentiated planetesimals suggesting a hybrid accretion origin like Uranus and Neptune, and the elevated position of Martian meteorites above the terrestrial fractionation line on the 3-oxygen isotope plot suggests a presolar origin for Mars. The protoplanetary disk from which presolar ‘TNOs’ condensed by GI to form Mars may have been a circumprimary disk around the A-component of binary-Sun or a circumbinary disk may have formed around binary-Sun following the emergence of Jupiter and Saturn into circumbinary orbits themselves. A circumbinary disk doesn’t give much additional information about the dynamics of Jupiter and Mars, but it would provide information about relative formation and dynamic mechanisms between spin-off planets and super-Earths formed around binary stellar components, particularly since super-Earths generally form beyond hot Jupiters which in this case is reversed. This also raises the question of what happened to the left-over TNOs and dwarf planets from the hybrid accretion of Mars, suggesting that compound-TNO dwarf-planet Ceres and other icy bodies of the inner asteroid belt may be presolar.

Super-Earth Mercury and the Asteroids:
Asteroids may have condensed GI at about the orbit of Mercury just beyond the magnetic corotation radius of the super-intense magnetic field of the Sun in its flare-star phase. Then Mercury may have formed by hybrid accretion of asteroids before clearing its orbit of the remaining asteroids and the compound-asteroid dwarf planet Vesta which was likely successively cleared from the orbits of Venus, Earth and Mars. Rocky-iron asteroids may have ‘thermally differentiated’ by radioactive decay of LRN f-process radionuclides, whereas chondrites may have condensed over a longer time span, perhaps after several half lives of aluminum-26 and one or more half lives of iron-60. So the planet Mercury may have isotopic enrichments similar to the howardite–eucrite–diogenite (HED) meteorites thought to be from 4 Vesta.

CAIs and Chondrules:
CAIs may have condensed in polar jets from the core of the spiral-in solar-component merger, explaining their canonical enrichment of aluminum-26 from the solar core. If the flare-star phase of the Sun following the LRN melted dust accretions forming chondrules, then the flare-star phase may have lasted about 3 million years, the duration of chondrule formation. The millimeter scale size of chondrules formed in low solar orbit also argues strongly against pebble accretion as a planetesimal or planet formation mechanism if chondrules represent melted dust accretions. The 1 slope of chondrules and CAIs of the carbonaceous chondrite anhydrous mineral (CCAM) line indicates complete mixing, whereas the 1/2 slope of the terrestrial fractionation line indicates complete fractionation, and nothing more, not mass-independent fractionation as is commonly supposed. Ordinary chondrites, however, have a greatly-elevated ∆17O bulk-matrix lying above presolar Mars 3-oxygen-isotope fractionation line which may indeed be due to photochemical-induced mass-independent fractionation due to solar exposure of small dust grains with high surface-to-volume ratios over some 5 million years prior to their condensation by GI into ordinary chondrites. In ordinary chondrites, mass-independent fractionation may be “occurring mainly in photochemical and spin-forbidden reactions” (Wikipedia–Mass-independent fractionation).

Loss of Companion and the solar-system barycenter (SSB):
Our former Companion star may have had a size range between 1/18 of a solar mass brown dwarf up to 1/8 of a solar mass red dwarf star. The orbit of the Sun around the SSB may have aligned heliocentric orbits along the Sun-SSB-Companion axis with orbital aphelia pointing away from the Companion and orbital perihelia pointed toward it. Furthermore, the centrifugal force of the Sun around the SSB would have raised the orbits and reduced the periods of planetesimals and planets slightly, and by extension the recent loss of the Companion will have decreased the periods and former semi-major axes. Additional solar radiation caused by decreasing the semi-major axis of Earth may be greatly overshadowed by environmental effects, but may still be observed in the retrograde orbit of Venus, assuming Venus was formerly in a synchronous orbit around the Sun, with one side always facing the Sun.

The loss of the centrifugal force of the Sun around the former SSB has the effect of increasing the apparent gravity of the Sun, lowering heliocentric orbits, increasing their orbital velocities and decreasing their periods. If a lower, faster orbit results in a higher orbital angular momentum, then the closed-system conservation of angular momentum and energy may have the effect observed on Venus of slowing heliocentric orbits, or in Venus’ case, reversing it into a retrograde orbit.

But the planet Mercury has a 3:2 spin-orbit resonance in which Mercury undergoes 3 rotations for every 2 orbits around the Sun, so if Mercury had a former 1:1 synchronous orbit like Venus then its prograde rotation increased rather than decreasing like Venus’. This might occur if Mercury had to assume a more eccentric orbit with lower orbital angular momentum and higher rotational angular momentum in order to conserve both energy and angular momentum in a closed system.


Thayne Currie suggests a compelling hybrid mechanism for forming (giant) planets by accretion from a population of 1 km planetesimals, in which the planetesimals are ‘condensed’ by gravitational instability (GI). (Currie, 2005)

Suggested Alterations to Thayne Currie’s Hybrid Model:

1) Planet Type:

This hybrid mechanism may be limited to forming terrestrial super-Earth–type planets and not the cores of gas-giant planets as supposed. Gas planets, including mini-Neptunes, are hypothesized to form by an alternative mechanism, designated, ‘bar-mode isolation’.

2) Hybrid Planetesimal Size:

Presolar (Type I) planetesimals forming super Earths may be vastly larger than the 1 km Dia planetesimal size envisioned. Indeed, comets composed of (Type II) stellar-merger debris may have condensed as small as 1 km Dia as far out as 200 AU, but presolar planetesimals may have condensed at the inner edge of the protoplanetary disk in a size range of (circa) 100 km Dia and larger. Many presolar planetesimals may still reside in the Kuiper belt where they are designated, trans-Neptunian objects (TNOs). For this reason, presolar planetesimals forming super Earths and left over presolar planetesimals will be designated, ‘TNO-type planetesimals’, or just ‘TNOs’ for short.

3) Formation Location of TNO-type Planetesimals:

TNOs may have condensed dramatically closer to their host stars than the comets of our early solar system. The density and pressure necessary to form self-gravitating masses capable of condensing by GI in protoplanetary disks with high gas-to-dust ratios may require the assistance of intense ‘pressure dams’ developed by infalling dust and gas against the truncated inner edge of protoplanetary disks. In solitary, young stellar objects (YSOs), the inner edge of protoplanetary disks may be controlled by the corotation radius of YSO magnetic fields. In the case of close-binary YSOs with circumbinary protoplanetary disks, the inner edge may be gravitationally rather than magnetically truncated by a combination of binary-orbit corotation resonances (CRs) and outer Lindblad resonances (OLRs) in the range of 1.8a to 2.6a, where ‘a’ designates the binary-stellar semi-major axis. (Artymowicz and Lubow 1994) Higher binary-stellar eccentricity increases the radius of the inner edge due to the increased strength of higher-order OLRs, so a circumbinary protoplanetary disk with an inner edge as far as 2.6a beyond the stellar barycenter should be quite eccentric.

An accreting super-Earth will attempt to clear its orbit of TNOs, but it may only be successful upon reaching a super-Earth-sized mass. This likely involves a combination of raising the orbits of the remaining TNOs while lowering its own orbit, such that the angular momentum of the TNO reservoir including the mass of the super Earth remains constant in the closed system.

Two alternatives come to mind for forming Cascades of super-Earth-sized exoplanets smaller than Neptune. The first is that the vast majority of TNOs condense at the inner edge of the protoplanetary disk prior to the growth by core accretion of a cascade of super-Earths from the initial TNO reservoir. Alternatively, the mass of super-Earths at their orbital periods may be sufficient to ‘open up a gap’ in the protoplanetary disk, in essence, clearing their orbits of dust and gas as well as TNO-type planetesimals. In this alternative case, TNOs may condense in cascades over time as a progression of super-Earths pushes the inner edge of the protoplanetary disk further and further out; however, this alternative mechanism might tend to require increasingly-larger super-Earths to ‘open up a gap’ in the protoplanetary disk at larger orbital periods, perhaps resulting in more of a size progression of super-Earths.

Gas-giant binary ‘spin-off planets’ formed by GI from may disrupt the cascade of super-Earths as they spiral out from their progenitor stars, perhaps stalling and squeezing in between existing super-Earths. And rates of spiral-out ‘orbit inflation’ may vary orders of magnitude between binary gas-giant planets spiraling out from solitary stars and those spiraling out from binary stars, due to the with the advantage of binary-binary resonant coupling, such our four spin-off planets, Neptune, Uranus, Saturn and Jupiter may have quickly bypassed our only stunted super-Earth, Mars, without significantly altering its semi-major axis; however, the first spin-off planet out of the stellar realm, Neptune, may have cleared out the remaining TNOs with its outer resonances.

By comparison, a vastly slower rate of orbit inflation of binary gas-giant planets spiraling out from solitary stars may significantly disrupt the semi-major axes of super-Earths in the act of overrunning them in slow motion.

Finally, Mini-Neptune-sized spin-off planets may be confused with super-Earths of similar mass where planetary density or spectroscopic data are unavailable to distinguish between ‘terrestrial’ super-Earths and gas-/ice-planet mini-Neptunes.

This raises the question of the origins of our hypothesized former, binary companion star, Proxima (Centauri), prior to spiraling out into the Oort cloud. Proxima is hypothesized to have orbited at about 75 AU from the Sun at 4,567 Ma when our binary Sun is hypothesized to have spiraled in and merged in a luminous red nova (LRN), but whether Proxima originally formed as a wide-binary 10s of AU from our former binary Sun or whether a solitary protostar fragmented repeatedly causing binary Proxima to spiral out from its central progenitor, collecting the vast majority of TNOs in its outer resonances along the way is unknown, but this second scenario is preferred. A single progenitor star could explain the distance of the Martian orbit if Mars was carried to its current distance from the Sun before falling through Proxima’s resonances, as the resonant strength decreased in intensity with distance. If so, then the Kuiper-belt TNOs either condensed after Proxima spiraled past them or Proxima’s resonances were leaky, leaving TNOs behind for Neptune to shepherd out in its outer resonances. And Proxima may have continued to condense TNOs prior to 4,567 Ma as it rapidly spiraled out to 75 AU on the strength of its binary-Sun–binary-Proxima resonant coupling.

Cascades of super-Earths tend to exhibit adjacent orbital-period ratios of 1:3 to 2:3; however, the outermost super-Earth tends to have a higher orbital-period ratio, somewhat reminiscent of a single steel ball bearing bouncing off the end of a train of ball bearings in a ‘Newton’s cradle’ arrangement. And similarly, perhaps the spin-down energy and angular momentum of the central star transfers through super-Earth cascades to the inflate the orbit of the outermost super-Earth, accounting for its typically higher orbital-period ratio.

Tau Ceti and HD 40307 are apparently five and six super-Earth exoplanet star systems, respectively, formed inside out by resonance cascades of condensed planetesimals that accreted to form super Earths. These two systems appear to be uncomplicated by stellar mergers or spin-off planets.

HD 10180 may be a former binary star stellar components spiraled in and merged like our Sun, with:
4 spin-off planets (e, f, g and h),
3 super-Earth-sized planets (c, d and j), and
2 merger-planets (b and i)

Cascades of Super Earths_1

Finally, aqueously-differentiated gneiss-dome TNO cores may be visible on Mars in a number of chasmas and impact basins (Melas Chasma, Hellas Planitia, the central uplift in Becquerel Crater and etc.) where prevailing winds have removed sand dunes, revealing Mars’ internal composition.

Hellas Planitia, Twisted Terrain

Hellas Planitia, Twisted Terrain_1



Oxygen with its 3 isotopes grants a particularly useful window into the formation of early solar system materials. If excess 16O was created by helium burning in the luminous red nova (LRN) merger of the close binary pair (binary sun) then the ratio of the two heavier isotopes to 16O (17O/16O and 18O/16O) plotted against one another on the oxygen three-isotope graph provides a good indicator for the degree of LRN contamination. Additionally, the degree of mass fractionation can be inferred by the slope of materials plotted on the graph, and the combination of the two effects helps to determine homogeneity or heterogeneity of early solar system materials and the relationships of various materials to one another.

CI chondrites plot in a tight grouping in the upper right hand corner of the oxygen three-isotope graph, whereas carbonaceous chondrite anhydrous minerals (CCAM) plot on a 1 slope toward the lower left corner of the graph. The 1 slope of CCAM merely indicates perfect mixing with no mass fractionation due to chemical reactions with rapid temperature gradients, while the shift towards the lower left of the graph indicates 16O (LRN) enrichment.

The ultra-high rate of jostling between atoms and molecules in a liquid state (aqueous or magma) on earth compared to mineral condensation in the near vacuum of interplanetary space provides many orders of magnitude greater opportunity for chemical reactions to occur within the ‘fractionation temperature window’ due to chemical reactions with far-lower temperature gradients. The result is that almost total mass fractionation occurs in a liquid state (which plots with 1/2 slope on the oxygen three-isotope graph) while almost total mixing occurs in a condensation state (which plots with 1 slope on the oxygen three-isotope graph). (Mars rock also plots with a 1/2 slope above the TFL on the oxygen three-isotope plot, indicating formation from a slightly different 17O/18O reservoir.)

Over the 3 million years following the LRN, presolar material may have swirled back into the inner solar system, raising the 18O/16O and 17O/16O ratios over time as these increasingly presolar isotope ratios incorporated themselves into chondrules and chondrites. And the ultra-intense magnetic field of the flare-star phase of the sun following the LRN may have melted interplanetary dust aggregates to form the chondrules.

The LRN may have formed a majority or all of the SRs of our early solar system by (helium burning, r-process and alpha-process) nucleosynthesis : 7Be, 10Be, 14C, 22Na, 26Al, 36Cl, 41Ca, 44Ti, 53Mn, 54Mn, 60Fe, 63Ni, 91Nb, 92Nb, 107Pd, 129I, 146Sm, 182Hf and 244Pu, and also enriched the sun with stable isotopes, 12C, 14N and 16O. These LRN isotopes represent enriched solar, not depleted chondrite.

Possible evidence for the high velocities necessary to create spallation nuclides in LRNe may have been found in LRN PTF10fqs from a spiral arm of Messier 99. The breadth of the Ca II emission line may indicate two divergent flows, a high-velocity polar flow (~ 10,000 km/s) and a high-volume, but slower equatorial flow. (Kasliwal, Kulkarni et al. 2011) Some of the SRs may have been created by spallation in the high-velocity polar outflow of the LRNe, particularly 7Be and 10Be, since beryllium is known to be consumed rather than produced within stars.

The solar wind is ~40% poorer in 15N than earth’s atmosphere as discovered by the Genesis mission. (Marty, Chaussidon, Wiens et al. 2011) The same mission discovered that the sun is depleted in D, 17O, 18O by ~7% compared to all rocky materials in the inner solar system. (McKeegan, Kallio, Heber et al. 2011) “[T]he 13C/12C ratio of the Earth and meteorites may be considerably enriched in 13C compared to the ratio observed in the solar wind.” (Nuth, J. A. et al., 2011)

Until the details of nucleosynthesis in various-size stellar merger LRNe, we will have to draw indirect conclusions from anomalous solar enrichment and depletion compared to presolar CI chondrites and neighboring stars of similar size and age in accordance with principles of galactic chemical evolution.

Our sun appears to be enriched in at least three primary isotopes: 12C, 16O and 28Si, compared to their secondary s-process isotopes: 13C, 17O-and-18O and 29Si-and-30Si respectively. Oxygen-16 is a primary isotope which should decrease over time in the galaxy as the secondary 17O and 18O increase over time, but instead, the sun is enriched with 16O/18O compared to the solar neighborhood, lending support for a solar LRN. Additionally, the 18O/17O ratio of the interstellar medium today is about 3.5 compared to the solar value of 5.2. (Meyer et al., 2008)

The several suspected LRNe that have been observed to date indicate that they reach a higher luminosity than white-dwarf novae. Novae reach temperatures of (2-3)x10^8 K (Nittler and Hoppe, 2005), but stellar merger LRNe may bear some semblance to the far-hotter Type II supernovae (SNe) due to the substantial gravitational collapse occurring in both cases. And like SNe, LRNe may radiate most of their gravitational energy in the form of neutrinos, facilitating gravitational collapse. If the LRN created the silicon anomaly of our sun, then peak core temperatures may have reached several billions of Kelvins, enabling the alpha process to create excess 28Si. The list of enriched alpha process elements in ‘Type II’ LRN material: 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, 56Ni and 60Zn.

The significant 28Si isotope enrichment of our solar system compared with older, presolar, mainstream silicon-carbide (SiC) grains in carbonaceous chondrites is evident on a oxygen three-isotope graph where solar values plot to the lower left corner of the grouping of mainstream SiC grains. (Nittler and Hoppe, 2005, Fig. 2) However, glalactic chemical evolution (GCE) predicts a trend over time toward the heavier secondary isotopes, 29Si and 30Si, so our solar system bucks this trend, apparently having been reset by some mechanism. Presolar X-type SiC grains from SNe plot far below even the solar value, suggesting the possibility of a high-degree of supernova contamination to explain away the solar 28Si enrichment; however, supernova grains are only 1% as prevalent as mainstream grains in solar-system chondrites which is insufficient to explain this enrichment. So again we come back to an LRN as the most likely cause of solar enrichment.

The SR 26Al from the early solar system has been suggested as a SN input near in place and time to the early solar system, perhaps even initiating the gravitational collapse of our protosun. But this local supernova hypothesis has difficulty explaining the canonical ratio of 26Al to 27Al in Ca-Al-rich inclusions (CAIs), whereas an LRN solar origin requires it.

Another difficulty for an SN source is the general 17O enrichment in oxygen-rich presolar grains, unlike the 16O enrichment of our sun. (Nittler, 2005) So an ad-hoc mass-independent theory was developed to explain the solar 16O enrichment which involves self-shielding of CO from ultraviolet photo-dissociation in molecular clouds and/or the early solar system. The LRN model, by comparison, creates the 16O enrichment directly and also neatly explains the solar 16O enrichment compared to the presolar planetary-accretion-disk.

Additional evidence against a local supernova input is the extreme heterogeneity of isotopes (e.g., 12C/13C = 5–10,000) in presolar grains of supernova origin that formed with live 44Ti with a 50 year half life. (Nittler, 2005)

Finally, the LRN may have also have burned enough hydrogen and helium in the LRN to raise the metallicity of our sun compared to nearby stars of similar age and galactocentric distance. Our sun at its present 8.5 kpc galactocentric distance corresponds to stars of solar age having formed at 6.6 +- 0.9 kpc (Wielen Fuchs and Dettbarn)


- Inner Oort cloud (IOC): a doughnut-shaped disk of comets with an inner edge beginning at around 2000 to 5000 AU and an outer edge at circa 20,000 AU
- Extended scattered disc (ESD): a population of ‘detached objects’ (DOs), not gravitationally influenced by Neptune, with perihelia greater than 50 AU and aphelia less than about 1,500 AU and a semi-major axis in the range of 150-1,500 AU

This section will make the case for a former Companion star (red dwarf or brown dwarf) to the Sun that ‘recently’ drifted out of the solar system and may have been imaged by the all-sky Wide-field Infrared Survey Explorer (WISE). The Companion star may still have a relatively ‘high’ parallax with low radial motion and almost-nonexistent proper motion. Its mass could range from a high-end brown dwarf up to a red dwarf the mass of Proxima Centauri, and its apparent age may be on the order of 542 Ma, the age of its hypothesized binary merger. Additionally, the Companion may have planets (due to the relatively-high angular momentum of our solar system including its former Oort cloud Companion) and a comet belt ‘condensed’ at the inner edge of its former circumbinary dust disk (at perhaps 1 or more AU separation) ‘condensed’ from dust debris, with dust debris originating from the luminous red nova (LRN) merger of our hypothesized former binary Sun merger at 4,567 Ma. Closer in to the Companion, may be a second belt of higher-density asteroids condensed from the LRN debris of the former binary Companion which may have merged at 542 Ma, ‘condensing’ an asteroid belt just beyond the Companion’s magnetic corotation radius.

The mass of the Companion, calculated assuming exponential orbit inflation of its period over time, hinges on the distance of the inner edge of the inner Oort cloud which has a wide margin of uncertainty: 2000 to 5000 AU. The orbital energy of the Companion following the solar LRN at 4,567 Ma is assumed to efficiently translate from lowering its binary orbit to raising the Sun-Companion apoapsis by core collapse of the then trinary star system. The external torque responsible for the core-collapse energy transfer may be tidal gravity of the Galactic core.

If Saturn and Jupiter condensed from excess–angular-momentum molecular gas spun off from the two solar components of our binary Sun, then Saturn and Jupiter’s present heliocentric orbits may be similar to the original solar components. Conservation of planetary angular momentum caused the planets to spiral out from their respective solar components as the components spiraled in—until the reaching the solar-component Lagrange points whereupon the gas giants assumed circumbinary orbits. If binary-binary coupling is particularly effective at promoting core collapse, then the orbital energy and angular momentum of the ‘hard’ close-binary solar orbits may have rapidly transferred into increasing the ‘soft’ wide-binary separation.

The Companion may have formed in any one of several ways. It may condensed by gravitational instability along with the Sun from the original bok globule, or it may have fragmented from the smaller solar b-protostar component due to excess angular momentum or it may have ‘condensed’ from the protoplanetary disk by disk instability, with disk instability promoted by the orbital asymmetry of a binary Sun on a circumbinary protoplanetary disk.

Core-Collapse ‘Orbit Inflation’ of a our former Binary Companion:

The hypothesized, exponential, core-collapse ‘orbit inflation’ is constrained by three points: 1) the solar-system barycenter (SSB) crossing Uranus (4.22 Ga [Norman and Nemchin 2014]) and 2)Neptune (3.9 Ga), causing the bimodal late heavy bombardment (LHB) of the inner solar system, and 3) the Companion’s arrival at the present inner edge of the inner Oort cloud (IOC) at about 2.5 Ga, causing the Archean to Proterozoic transition.

Solar System Barycenter (SSB) pumping at perihelia:
The SSB may be responsible for pumping energy into eccentric TNOs like pumping one’s legs on a swing. As the SSB ‘spirals out’ and crosses planetesimal perihelia (particularly in eccentric orbits), the centrifugal force of the Sun’s orbit around the SSB is neutralized, effectively increasing the Sun’s gravity. With the outward centrifugal force neutralized, the planetesimals fall into lower higher-speed orbits, increasing their kinetic energy. Then as planetesimals move away from the SSB, the centrifugal force gradually increases again, lowering the Sun’s effective gravity which translates into increasing the aphelia as the additional kinetic energy translates into potential energy. Pumping on a swing also increases one’s angular momentum, but since gravity and centrifugal force are both radially directed forces (inward and outward), this planetesimal pumping mechanism wouldn’t appear to increase their angular momentum, so the angular momentum inherent in the planetesimals (TNOs) that merged to form Sedna, VP-113 et al., were most likely lifted into the extended scattered disc by the Companion’s shepherding resonances. The pumping mechanism, however, may be responsible for lifting the aphelia of extended-disk planetesimals into the IOC where they can accrete comets and above the periapsis of the Companion where they experience additional perturbation in transitioning from heliocentric orbits into barycentric orbits and back again.

Heliocentric to Barycentric pumping at apoapses:
As planetesmials cross the periapsis of the Companion even though they’re slung out by centrifugal force in the opposite direction, proportionately, the gravitational attraction of the Companion becomes more significant due to the non-linear inverse square law of gravity, moving planetesimals from heliocentric orbits toward barycentric orbits at apoapses. Barycentric orbits effectively increase the gravity felt by planetesimals, reducing their apoapses; however, unlike the radially-directed SSB effect at and near perihelia, misalignment of planetesimal semi-major axes with the Sun-Companion axis will induce a torque in the planetesimal orbit, tending to increase or decrease the angular momentum as well. In planetesimal semi-major axes that ‘lead’ the Sun-Companion axis, the Companion predominantly pulls the planetesimals forward in the barycentric portions of their orbits, increasing their angular momentum which lifts their perihelia while at the same time lowering their apoapses. By comparison, lagging highly-eccentric planetesimals orbits cross into the barycentric distance at apoapsis will tend to lose angular momentum as the planetesimals are pulled backwards in their orbits. This may be the mechanism by which extended-disk planetesimals (like Sedna) and IOC planetesimals (like comets) have historically sunk down into the planetary realm. But wouldn’t the SSB effect and the barycentric effect merely reach a stasis at apoapses where one would negate the other? Perhaps, unless the SSB effect were greater, in which case the apoapses may be continually driven higher even as the perihelia are driven lower, exacerbating the rate of perihelia decline.

Late Heavy Bombardment (LHB):
If Uranus and Neptune are both super-Earth planets formed by hybrid accretion of circa 100 km TNOs then Uranus and Neptune would have orbited through a cloud of TNOs in the early years of the solar system. A bimodal LHB occurring at Uranus and Neptune suggests that planetesimals sharing planetary orbits may be more susceptible to external perturbation than planetesimals between or beyond planetary orbits. The SSB crossing of Uranus and Neptune causing the LHB likely occurred at apoapsis of the exponential, wide-binary orbit inflation, partly due to slower orbital speeds, but also because Uranus and Neptune (but particularly Uranus) were rapidly clearing their orbits of planetesimals, so the earliest encounter would create the heaviest bombardment.

If comets condensed in a circum–wide-binary debris disk around the Companion in a planetesimal size range of 1-20 km, then the largest circa 20 km objects likely form the IOC’s inner edge, at 2000-5000 AU, where they began falling through the Companion’s outer shepherding resonances, while the smallest circa 1 km comets fell out around 20,000 AU at the outer edge of the IOC. The LRN debris cloud would have had extremely little initial angular momentum, so any debris disk formed beyond the Companion from which comets condensed would have acquired its angular momentum from the binary Companion in some manor.

Far-larger TNOs condensed at the inner edge of the circumbinary protoplanetary disk around binary Sun and were also apparently shepherded into the extended scattered disc where they fell through the shepherding resonances at much shorter orbital periods. TNOs in the extended scattered disc suggest that the proto-Companion fragmented from the larger binary solar component, near Saturn’s orbit, before fragmenting again due to excess angular momentum to form a binary Companion. This was followed by core-collapse orbit inflation into the extended scattered disc. (Alternatively, TNOs may have condensed in two locations, beyond binary Companion as well as beyond binary Sun if the Companion originally formed at the distance of the extended scattered disc.)

Archean to Proterozoic transition:
Comets may be slightly enriched in planetary volatiles, primarily from the volatilization of Earth and Venus in their gassy protoplanet phase in which they filled their respective Roche spheres as they orbited inside the expanded red-giant phase of the LRN. Additionally, comets are less volatilly depleted than the asteroids and likely less depleted than the TNOs because they condensed further out at cooler temperatures. The most significant volatile enrichment of comets to sedimentary core formation may be chlorine which would dictate the salinity (KCl and NaCl) of aqueously-differentiated internal oceans. KCl is is more soluble in water above 25 degrees C than NaCl at low concentrations, but at ‘mutual saturation’ the cross over point rises to 70 degrees C due to the common chlorine ion. So the cold ice-water boundary in core, comet salt-water oceans may serve to dump potassium out of solution in the form of precipitated pink K-feldspar mineral grains. while the less temperature sensitive sodium remains dissolved.

About 90% of the continental crust between 4.0 and 2.5 Ga belongs to the TTG suite. (Jahn et al. 1981; Moyen and Martin, 2012) The transition from TTG gneiss to granite granodiorite (GG) in the Proterozoic is posited to be the accretion of comet granite into dwarf planets, in addition of comet-comet accretions, forming far-larger batholiths.

Comets composed of Type II LRN debris may have high Gibbs free energy due to the short solar-system dwell time of LRN debris since its origin as highly-reduced solar plasma. By comparison, presolar material has been exposed to cosmic rays for billions of years, likely lowering its Gibbs free energy content. So the interaction between low Gibbs free energy TNOs/dwarf-planets and high Gibbs free energy comets may cause violent chemical reactions leading to melting of precipitated granite to form molten I-type plutonic granite.

By comparison, lower-temperature aqueously-differentiated authigenic granite (orbicular granite, Rapakivi A-type and layered S-type) may have formed as authigenic sedimentary cores inside contact-binary comets. The Companion may have perturbed IOC binary comets to spiral in and merge, initiating authigenic precipitation of mineral grains in their core salt-water oceans melted by the potential and kinetic energy of binary mergers.

Then these authigenic-granite contact-binary comets were perturbed down into the extended scattered disc by the barycentric to heliocentric orbital transition by the Companion and were swept up in dwarf planets contributing their Rapakivi A-type granite. The Southwest to Midwest swath of the present United States may be the core of a dwarf planet that impacted Earth around 1,100 Ma, proceeding and likely causing the Grenville orogeny.

The centrifugal force of the Sun around the SSB may have caused aphelia precession of scattered extended disc objects, hurling them out along the Sun-SSB-Companion axis so their aphelia point away from the SSB and Companion, creating a super concentration along the axis at perihelia, encouraging planetesimal mergers. Long-period Oort cloud planetesimals with periods more similar to that of the Sun-Companion may not undergo aphelia precession but may still experience preferential alignment in the Sun-Companion plane as reputably discovered by Matese and Whitman (Matese and Whitman 1999) and (Matese and Whitmire 2011).

Argument of Periapsis of extended scattered disc objects:
“there are no observational biases that an explain the clustering of the argument of perihelion (ω) near 340° for inner Oort cloud objects and all objects with semi-major axes greater than 150 AU and perihelia greater than Neptune.” (Trujillo and Sheppard 2014)

Argument of periapsis is one of a handful of parameters that describe orbits from our terrestrial platform based on ecliptic and celestial planes. Clustering of the argument of perihelion of ESD objects could also be described as a clustering of perihelia, to use a far-more intuitive parameter, which would could occur due to centrifugal force around a former solar system barycenter, with perihelia pointing toward the former Companion. Figure 3 (Trujillo and Sheppard 2014) shows a strong alignment of argument of periapsis for objects with semi-major axes greater than 150 AU, but what this implies about the closest approach of the Sun to the SSB in the Phanerozoic and the quantities and orbits of smaller TNOs dragged outward by the Companion in the early years is undetermined.

Planetesimal proximity at the low orbital speeds beyond the Kuiper belt along the Sun-Companion axis (albeit at their highest-speed perihelia) apparently promotes planetesimal mergers rather efficiently, forming dwarf planets like Sedna along with potentially 100s of undiscovered dwarf planets and potentially many thousands of TNOs. But since the loss of the Companion, the inner solar system may be moving from an era dominated by long-period icy-body impacts from the ESD to one dominated by rocky asteroids from the inner solar system which are no longer held firm against Jupiter’s resonances by centrifugal force.

A binary Companion star with the combined mass of Proxima Centauri whose apoapsis spiraled out exponentially—and was constrained by requirement of the SSB crossing the orbit of Uranus at 4.22 Ga and the orbit of Neptune at 3.9 Ga—would reach the inner edge of the IOC, at 1950 AU, by 2,500 Ma at the Archean to Proterozoic transition. Our former Companion’s apparent age, however, may be much younger than its bare minimum actual age of 4,567 Ma because of its more recent spiral-in merger at 542 Ma. Proxima, however, is estimated to be 4.85 Ga with the high proper and radial motion it shares with Alpha Centauri, most likely making Proxima a C-star wide-binary companion to the Alpha Centauri AB close-binary pair. If our former Companion is still visible (perhaps already cataloged by the WISE survey), its apparent age may be on the order of 542 Ma with an exceedingly low proper and radial motion. Even if our Companion has an elevated radial motion from a close encounter with a passing star, its proper motion should at least be exceedingly low, likely tracing its path back to within about 1 light year of the Sun, around the outer edge of the outer Oort cloud (OOC).

Exponential orbit inflation spiral out of apoapsis separation of the Sun binary-Companion ‘soft’ wide-binary, reducing the binding energy of the Companion by increasing the binding energy of the Companion’s binary components.

Kepler’s third law: P12/a12 = P22/a22 for any two planets, but assuming P = 1 yr and a = 1 AU for Earth, the relation becomes, P2 = a3

The logarithm of an exponential is linear of the form: y = mx + b

Three equations in 3 unknowns:
1) SSB at Uranus: 1.2840 + .96047 = 4220m + b
2) SSS at Neptune: 1.4786 + .96047 = 3900m + b
3) Companion at inner edge of IOC: y = 2500m + b
- 1.2840 is the log of Uranus’ semi-major axis in AU at 4220 Ma
- 1.4786 is the log of Neptune’s semi-major axis in AU at 3900 Ma
- log(9.13) = .96047 is the ratio multiple between the Sun-SSB distance and the Sun-Companion distance for a Proxima Centauri mass Companion: ms/mp + 1 = 1/.123 + 1 = 9.13, where 1/.123 is the relative SSB-Companion distance and ’1′ is the relative Sun-SSB distance
- y is log distance in AU at 2500 Ma at the inner edge of the IOC
- m is the linear slope: solving, m = -1/1644.4
- b is the y-intercept: solving, b = 4.8107

y = -x/1644.4 + 4.8107, for a Proxima Centauri sized Companion
at x = 2500 Ma, y = 3.2904, 10^3.2904 = 1951.6 AU (1950 AU)
at x = 4,567 Ma, y = 2.0334, 10^2.0334 = 108 AU
at x = 542 Ma, y = 4.4811, 10^4.4811 = 30, 275 AU semi-major axis (with apoapsis near 2(30,275) = 60550 AU, perhaps explaining the circa 10^4 AU aphelia distance of long-period comets and the 20,000 AU outer edge of the IOC)

Orbital period of object around barycenter: T = 2pi(a3/(G(ms + mc)))1/2, where G = 39.5 in yr, AU and solar masses, ms + mc = 1.123 for a Proxima Centauri mass Companion, a = 30,275 AU, T = 4.97 million years.

So for a Proxima Centauri sized Companion, the Sun’s binary angular-momentum transfer to the SSB-centric Companion orbit may have lifted it to around 108 AU from the Sun, or (108/9.13)8.13 = 96 AU from the SSB, with a semi-major axis of around 30 kAU in the Phanerozoic Eon with a period on the order of 5 million years.

If the inner edge of the IOC is thought to vary in the range of 2000-5000 AU, with A Proxima Centauri mass Companion corresponding to the minimum value (1950 Ma), then calculate the mass corresponding to the maximum value of 5000 AU:

Again, three equations in 3 unknowns:
1) SSB at Uranus: 1.2840 + m = 4220m + b
2) SSS at Neptune: 1.4786 + m = 3900m + b
3) Companion at inner edge of IOC: 3.7000 = 2500m + b
- 1.2840 is the log of Uranus’ semi-major axis in AU at 4220 Ma
- 1.4786 is the log of Neptune’s semi-major axis in AU at 3900 Ma
- m is the log of the unknown ratio multiple between the Sun-SSB distance and the Sun-Companion: solving, m = 1.3700, 10^1.3700 = 23.44, subtracting 1 unit for the reduced Sun-SSB distance leaves a distance/mass ratio of 1 to 22.44 between a brown dwarf Companion and the Sun
- 3.7000 is log of 5000 AU at the inner edge of the IOC at 2,500 Ma
- m is the linear slope: solving, m = -1/1644.4
- b is the y-intercept: solving, b = 5.2203

y = -x/1644.4 + 5.2203
at x = 2500 Ma, y = 3.7000, 10^3.7000 = 5000 AU
at x = 4,567 Ma, y = 2.4430, 10^2.4430 = 277 AU
at x = 542 Ma, y = 4.8907, 10^4.8907 = 77,750 AU semi-major axis (with apoapsis near 2(77,750) = 155,550 AU)

Orbital period of object around barycenter: T = 2pi(a3/(G(ms + mc)))1/2, where G = 39.5 in yr, AU and solar masses, ms + mc = 1 + 1/22.4 = 1.0446, a = 77,750 AU, T = 21.2 million years
With an apoapsis around 155,550 AU, a 46.7 Jupiter-mass brown dwarf would have been vastly more likely to have drifted off than a Proxima-Centauri–sized red-dwarf star with less than half the semi-major axis.

“It seemed, therefore, possible that the largest fraction of BD/VLM [brown-dwarf/very-low-mass-(star)] binaries has separations in the range of about 1–3 AU and remained yet undetected.” (Viki Joergens 2008)

With a binary Companion separation in the range of 1-3 AU, vs. the far more massive hypothesized separation of the solar binary components around 5.2 AU (Jupiter) + 9.6 AU (Saturn) = 14.8 AU orbiting the solar barycenter and likely fragmenting from the smaller component at 9.6 AU, the vast majority of the Companion’s closed-system angular momentum likely derived from the former binary Sun. Therefore the barycenter at closest approach may have routinely descended below the orbits of Uranus and Neptune for 4 billion years unless Galactic torque contributed angular momentum, particularly in the Phanerozoic following the binary-Companion merger with no binary resistance.

How long since the loss of the Companion?
The Companion certainly would have been responsible for the Eocene–Oligocene extinction event, 33.9 Ma, that may have contributed the ‘rough terrain’ in Morocco west through Italy, Greece, Turkey, Iran, Tajikistan, Nepal and Tibet, including the ‘young’ gneiss domes of the Aegean, Tajikistan and Nepal. The Companion was likely also responsible for the Middle Miocene disruption, 14.5 Ma, whose impact crater may trace Marianas Trench, and may have contributed a small amount of terrain to the Japanese islands, Kyushu, Shikoku and Honshu. But the most recent (local) extinction event the 12.9-13.1? kya megafaunal extinction of the Western Hemisphere that may have formed the 450 km Dia Nastapoka arc basin of the lower Hudson Bay and contributed the aqueously-differentiated authigenic core of the Belcher Islands would be too recent for a Companion induced impact, otherwise the Companion would still be ‘in the solar neighborhood.

Snowball Earth:
Snowball Earth during the Cryogenian Period may be due to global cloud cover on Earth caused by a super-intense wind emanating from the common-envelope phase of the spiral-in merger of the Companion’s binary components, created like the traces of charged particles in cyclotron cloud chambers. The intervals between Snowball Earth episodes are too long and too irregular to correspond to an orbital period of the Companion. Instead, the several Snowball Earth episodes may correspond to wet-Earth–scorched-Earth intervals in which a super-dense common-envelope wind boils off Earth’s oceans and atmosphere between intermittent partial resupply by icy-body dwarf-planet impacts. This would imply total cloud cover, lowering terrestrial temperatures sufficiently to freeze over the oceans, with sublimation from the ice cover more likely due to sublimation caused by reduced atmospheric pressure than ‘etching’ caused by penetrating wind particles. Partial melting may have occurred in the multi-million year period toward the Sun binary-Companion apoapsis, causing rafting of icebergs broken off from continental ice flows.


The problem of planetesimal formation is a major unsolved problem in astronomy since meter-sized “boulders are expected to stick together poorly, and to spiral into the protostar in a few hundred orbits owing to a ‘head wind’ from the slower rotating gas” (Johansen et al., 2007).

Instead, TNOs, comets and asteroids may have ‘condensed’ by gravitational instability (GI) in a ‘pressure dam’ at the inside edge of accretion disks beyond the magnetic corotation radius around solitary stars and at the inner edge of circumbinary accretion disks around binary stars, with TNOs condensing from (Type I) presolar dust and ice near the orbit of Uranus beyond our former binary Sun. Then hybrid core accretion of TNOs may have formed the planets Uranus and Neptune which cleared their orbits of the remaining TNOs and dwarf planets into the Kuiper belt beyond. A binary companion star beyond our former binary Sun (the size of Proxima Centauri or smaller), may have shepherded TNOs into the scattered disc and beyond as it spiraled out from the Sun in its continued core-collapse evolution, transferring energy and angular momentum from its binary orbit into its solar-system barycenter (SSB) orbit.

The relative size Uranus’ and Neptune’s core may give an indication of the relative mass of dust vs. ice in TNOs, and by extension, possibly comets as well. The size of Neptune’s core appears to be better constrained than Uranus’ at 1.2 Earth masses (Wikipedia) at about 14:1 ratio of ice to rock and metal. And if TNO-TNO collisions formed Uranus as well as present-day dwarf planets of the Oort cloud, then the ice to silicate ratio may be similar in dwarf planets for the percentage of the dwarf planet that has undergone aqueous differentiation, which wouldn’t extend to the surface. Finally, giant planets may accrete volatile gasses directly from the protoplanetary disk, possibly skewing the ice-to-silicate ratio in favor of more ice.

Similarly, asteroids may have condensed by GI in the pressure dam beyond the super-intense magnetic field of the Sun following its binary merger at about the orbit of Mercury, and Mercury may be a hybrid core accretion of asteroids formed by GI from condensed LRN (solar-plasma) dust with high Gibbs free energy, explaining the abundance of chemically-reduced metallic nickel and iron in M-type asteroids.

Oort-cloud comets may have ‘condensed’ at the inner edge of a circum-trinary accretion disk of our hypothesized former binary companion star (≥100 AU from the Sun which it shepherded into the Oort cloud where they began falling through the outer shepherding resonances at somewhere around 2000 AU at about 2500 Ma, ushering in the Proterozoic eon.

When the orbits of our former highly-eccentric companion star and binary Oort cloud planetesimals crossed one another, the transition from barycentric (SSB) orbit to heliocentric orbits and back again may have perturbed binary planetesimals, causing their binary orbits to spiral in to counteract the induced torque. And repeated instances may cause binary mergers, with the frictional and gravitational-potential energy heat melting salt-water oceans in their cores, pressurized by overlying icy mantles. This aqueous differentiation is the subject of this section.

The cold-classical Kuiper belt in typically low-inclination low-eccentricity orbits (hence ‘cold’) has a higher percentage of binary TNOs than the hot-classical population which is indicative that binary planetesimals may have historically resisted external torque with the angular momentum of their binary orbits. Solitary dwarf planets and solitary and recent spiral-in merger comets and TNOs, however, are unable to resist applied torque and thus may have their orbits greatly lengthened or shortened by barycentric to heliocentric and vice versa transitions, and so ‘recently’ merged planetesimals may find themselves merging at the super-concentration of the SSB, with their orbits aligned along the Sun–companion-star axis by the centrifugal force of the Sun around the SSB. And hybrid core accretion may occur at the super concentration of the SSB in the comparative microgravity of the Oort cloud even though the SSB corresponds to the highest velocity of the orbits at their perihelia.

So aqueous differentiation can occur in both in binary spiral-in mergers of Type I TNOs and Type II comets and in hybrid core accretion mergers of Type 1 Type 1 comet mergers and Type II Type II TNO mergers and mixed-type mergers, including differential size mergers between small comets down to 1 km in diameter with large dwarf planets, 100s of km in diameter and finally, large dwarf-planet–dwarf-planet mergers.

Rocky-iron asteroids formed shortly after the LRN have undergone ‘thermal differentiation’, aided by the radioactive decay of f-process LRN radionuclides; however, by the time ordinary chondrites condensed by GI against Jupiter’s inner resonances as a pressure dam some 5 million years later, some 7 half lives of 26Al and 2 half lives of 60Fe had transpired, protecting ordinary chondrites from thermal differentiation by radioactive decay, and besides half lives, size matters.

The lower gravity of smaller-mass mergers tend to form elongated peanut-shaped contact binaries, which affect the shape of internal salt-water oceans melted in their cores, whereas larger dwarf planets are more rounded in shape with an ocean shell surrounding the sedimentary core in which one side may be largely shielded from the direct effects of slow-speed collisions on the opposite side.

Aqueous differentiation may also cause thermal differentiation of more volatile ices than water ice, resulting in an onion-layered object with the most volatile ices toward the surface, away from the hot core from where more volatile ices sublime and deposit further out where pressures and temperatures drop below the deposition condensation point. This effect will tend to hollow out the core, promoting subsidence from above in the form of planetesimal quakes. Aqueous-differentiation (melting water ice) formerly containing voids, will also raise the internal density and promote subsidence.

Aqueous differentiation is initiated when binary planetesimals spiral in and merge or core accrete to form salt-water oceans in their cores, awash with nebular dust, providing a vast food supply for chemoautotroph microbes which contribute to internal heating and may vastly increase the range of minerals formed. Dissolution of nebular dust and their reaction products raise the concentrations of the various species in solution to the saturation point, precipitating minerals which continue to grow in size through crystallization in the micro-gravity of planetesimal-core oceans. When negative buoyancy of mineral grains overcomes the agitation keeping them in suspension, they settle out onto the growing sediment core and become buried, ending further growth through crystallization. Most minerals have an inverse solubility with temperature and therefore reach solubility saturation near the cold junction of the ice/water boundary.

Carbon dioxide sublimes at temperatures slightly below the melting point of water near the ice/water boundary of planetesimal oceans, creating trapped carbon dioxide gas over the oceans. The high partial pressure of CO2 in these trapped gas pockets forces it into solution where it reacts with water to form carbonic acid, lowering the pH. The process blurs somewhat above the relatively-modest critical point of carbon dioxide (7.38 MPa at 31.1 °C), but even in large planetesimals with pressures above 22 MPa that approach or exceed the critical point of water, CO2 would still be gaseous at the ice/water boundary. Early in aqueous differentiation when internal temperatures are rising and the ocean size is expanding, the sublimed gases build in pressure until relieved by a weakness in the overlying snow burden, allowing the gas to catastrophically vent toward the surface. Along the way, the decrease in pressure and temperature causes deposition to the solid state, further dropping the gas pressure. The drop in CO2 partial pressure converts carbonic acid back to the gaseous state, causing it to nucleate on suspended mineral grains and float them to the surface. The repetition of gradual, rising CO2 partial pressure followed by its sudden release causes corresponding variations in the concentration of carbonic acid which equates to ‘sawtooth’ pH fluctuations: slow pH decrease followed by catastrophic increase.

The solubility of aluminum salts is particularly pH sensitive, so trapped CO2 gas over planetesimal oceans could indirectly control the reservoir of dissolved aluminous species in solution. Since aluminous species solubility is U-shaped with respect to pH with an inflection point at about 6-1/2 pH (Driscoll and Schecher, 1990), a rise in pH from 3.5 to 6.5 would decrease the aluminous species solubility by a factor of more than 100,000, effectively dumping the entire reservoir of aluminous species, chiefly as a precipitation of felsic feldspar minerals. The drop in gas pressure causes CO2 bubbles to nucleate on any floating material including precipitated feldspar grains, floating them to the surface in a low-density froth that allows the mineral grains to continue to grow through crystallization.

Dissolved aluminous species vs. pH with trough at 6.5 pH

Silica solubility, by comparison, is particularly temperature sensitive, so any silica gel and quartz grains would tend to form and precipitate at the ice/water-boundary ‘surface’ where silica solubility is at a minimum.  So if silica gel and quartz grains tend to form at the surface and if feldspar mineral grains tend to float to the surface by way of catastrophic feldspar precipitation, then the floating foamy mass collecting at the surface would tend to have a felsic composition.

Silica gel and organic material, particularly slime bacteria, would lend a floating mass a degree of mechanical competency such that it formed into a cohesive floating mat.  Then as gas pressure over the ocean crept up, the CO2 component of the foamy mat would dissolve back into solution, eventually causing the mat to become waterlogged.  The larger circumference of the ice-water boundary compared to the sedimentary core would force a mechanically-competent mat to fold as it sank, stretching and bunching into into ‘ptygmatic folds’ (disharmonic and convolute folds), some of which fold back on themselves like alpine hairpin turns or ribbon candy.  By comparison, 200 years of conventional geology have yielded no adequate (or really any) explanation for the most convoluted ptygmatic folds, yet alone such a simple and compelling explanation.

Ptygmatic Folds in Gneiss Migmatite from Helsinki Finland
–used with permission of Sameli Kujala,
Conventional metamorphic theory might suggest that the felsic granite leucosome was intruded as a flat dike, followed by folding of the rock like the bellows in an accordion, presumably due to a high degree of elevated-temperature plasticity. Bellows are readily able to fold by displacing air, but since rock is essentially incompressible, hypothesized centimeter-scale folding is highly problematic. Metamorphic theory of migmatites requires felsic leucosomes to have a lower melting point.than the mafic melanosome, and yet in this case, the felsic leucosome dike apparently folds while remaining entirely intact as the mafic melanosome is apparently squeezed out from in between like toothpaste.
Conventional metamorphic theory is untenable in the face of a simple alternative, that of a sedimentary origin within a planetesimal ocean in which the phaneritic, authigenic grain size can be attributed to micro gravity.
Quartz solubility is highly temperature sensitive and feldspar is highly pH sensitive, so quartz precipitates at the cold-junction ice water boundary and feldspar precipitates when gas pressure (containing a partial-pressure of CO2) over the internal ocean is suddenly vented through a fissure allowing it to escape toward the surface, causing CO2 to bubble out of solution. As carbonic acid is converted to CO2 bubbles, the pH rises, precipitating feldspar, and the CO2 bubbles nucleate on the feldspar grains floating them to the surface where they add to the quartz grains, forming a felsic layer.
Perhaps silica gel or slime bacteria lend a degree of mechanical competency to the felsic ‘mat’ causing it to fold and bunch together into ptygmatic folds when it finally became water logged and sank onto the authigenic mafic ‘sand’ of the sedimentary core. Then over time, diagenesis and lithification turn the planetesimal sediments to rock, just as on earth.

If mafic minerals are more immune to pH than feldspar, then cyclical pH variation will form alternating felsic and mafic layers of authigenic minerals.  As pressures and temperatures rise during gravitational compaction, prograde metamorphism may convert hydrous minerals such as amphibole, serpentine and talc into anhydrous minerals such as coesite, pyroxene, garnet and olivine.  Later as the core begins to cool, retrograde metamorphism may partially reconvert some of the anhydrous minerals back into their hydrous counterparts.

Diagenesis shrinks the sedimentary core by forcing out the water, and as the core shrinks in volume, the authigenic sedimentary layers are forced into smaller circumferences, forcing the layers to fold in a process of ‘circumferential folding’.  By way of analogy, imagine a grape dehydrating to form a raisin.  By comparison with the simple, compelling and emergent grape and raisin analogy, conventional geology particularly struggles to explain small-scale (hand-scale) isoclinal folding, which entails significant hand waving.  Conventional geology is inclined to misinterpret sharp isoclinal folds as sheath folds cut through the nose of the fold, supposedly resulting from locally-concentrated shear forces.

Diagenesis of sediments on earth also results in volume reduction, but due to Earth’s enormous size, no perceptible reduction in circumference occurs and hence no circumferential folding occurs on earth.

With the expulsion of water, diagenesis gives way to lithification, and the folded sedimentary layers in Type I TNOs litchi into migmatite and gneiss. The hydrothermal fluids expelled during diagenesis also precipitate, forming sandstone/quartzite, schist and carbonate rock (limestone and dolostone) mantles over gneissic cores. Aqueous differentiation of Type II comets to form granite cores warrants its on section.

A major difference between authigenic terrestrial sediments and authigenic planetesimal sediments is mineral grain size. On the surface of our high-gravity planet, precipitated authigenic mineral grains fall out of aqueous suspension at clay size to become sequestered in sedimentary layers which lithify into mudstone, but in the microgravity deep inside planetesimal oceans, dispersion suspends gneiss-sized minerals, allowing them to grow dramatically larger through ‘crystallization’ before settling out of solution. Gravitational acceleration also increases from the center to the surface, with zero gravitational acceleration at the center of gravity, so mineral grain sizes decrease over time from the inside out of sedimentary planetesimal cores.

Authigenic Gneiss with Sharp Isoclinal Folds

In conventional geology, the supposed segregation of felsic and mafic minerals into leucosome, melanosome and mesosome layers by metamorphism of protolith rock to form migmatite gneiss is explained by the partial melting (anatexis) of lower-melting-point (primarily felsic) minerals and the extrusion of this melt down a “potential force gradient.”  “The consensus today is that both in situ melt and externally derived melt are present in most migmatites (Kriegsman, 2001).”(Urtson, 2005)  This means that adjacent layers alone can not explain the local enrichments and depletions of felsic and mafic layering, and so non-local externally-derived melt is needed for mass balance.  In the comet differentiation model, the local enrichment or depletion of authigenic felsic and mafic minerals in various layers is automatically balanced by a commensurate adjustment in the reservoir of dissolved species in solution, so while the conventional model requires both local and non-local inputs for mass balance, the comet model does not.  “Comingling and mixing of mafic and felsic magmas” is also suggested as an explanation for alternating felsic/mafic layers. (Sandeman et al., 2000)

Conventionally, gneiss domes are divided into two classes: fault related and fault unrelated.  Larger gneiss-dome systems are divided into evenly spaced and unevenly spaced.  Evenly spaced dome systems are considered to be instabilities caused by vertical-density or -viscosity contrast and horizontal loads, leading to buckling.  Unevenly spaced dome systems are associated with fault development or “superposition of multiple deformational phases.” “In nature, gneiss domes are often produced by superposition of several dome-forming mechanisms. This has made determination of the dynamic cause of individual domes and dome systems exceedingly challenging.” (Yin, 2004)

Rayleigh–Taylor (RT) instability is a favored explanation for the formation of evenly-spaced gneiss domes which is sometimes called a fingering instability where a finger is theorized to spread into a mushroom cap to explain concentric layering in ellipsoid gneiss domes.  RT instabilities, however, fail to explain the typical sedimentary basements: “In some, the lowest horizon of the mantle consists of basal conglomerate with boulders of the same gneiss that forms the dome; in others, the basement stratum is a layer of quartzite, above which follow dolomite and mica schist; and in still others, dolomite forms the basement.” (Eskola, 1948)

Section View of a Differentiated Comet

The basement horizon of quartzite, carbonate rock and conglomerate in gneiss-dome mantles can not be readily explained in conventional geology except with ad hoc tinkering, but in aqueous differentiation of TNOs, the sedimentary mantle rock are merely authigenic hydrothermal growth rings with a final conglomerate layer formed as the ice ceiling closes in on the sedimentary core during ‘freeze out’ as the ocean freezes solid and grinds the interfering points and tumbles the products into clastic conglomerate or graywacke.

In conventional geology, layers and lenses of particularly pure mineral ores within metamorphic rock require particularly-fortuitous sequences of leaching and deposition, while for the comet model, hydrothermal fluids expelled during diagenesis of the underlying gneiss may simply precipitate or crystallize enriched or depleted mineral ores in the vicinity of hydrothermal vents, dependent on the chemical composition of the effluents.

The mantled domes apparently represent earlier granite intrusions related to a orogenic period. The plutonic mass was later eroded and levelled, and thereafter followed a period of sedimentation. During a subsequent orogenic cycle the pluton was mobilized anew and new granite magma was injected into the plutonic rock at the same time as it was deformed into gneiss, causing its migmatization and granitization, or palingenesis.

(Eskola, 1948)


In the ‘authigenic phase’ of planetesimal (comet) differentiation, nebular dust is liberated from the icy overburden as the ocean expands from the inside out. When the planetesimal reaches thermal equilibrium, the ocean begins to freeze over, cutting off the input of nebular dust, but the core is still active in this second ‘hydrothermal phase’ of differentiation during which hot hydrothermal fluids are expelled from the authigenic sedimentary core during diagenesis and lithification. Mineral precipitation and crystallization continues in the planetesimal ocean, but the mineral source shifts from nebular dust raining down from above to hydrothermal fluids upwelling from below.

Pressure solution/dissolution, leaching and metasomatism during diagenesis and lithification of the sedimentary core expels hot aqueous fluids, partially or completely saturated with salts, minerals, (cat)ions and other species that may instantly reach saturation in the cooler ocean above, causing mineral-grain precipitation. Precipitation creates nuclei which grow by crystallization into characteristic-sized mineral grains before settling out of solution. When reaching the characteristic size for the buoyancy in the planetesimal ocean, the mineral-grains fall out of suspension to become buried and thereby sequestered from further growth by crystallization. Authigenic mineral grain size is a function of buoyancy and not gravitational acceleration, so while the local gravitational acceleration increases from the core to the surface, the buoyancy remains the same due to symmetry–is this true? The characteristic, authigenic sand-grain size in Wissahickon schist is about 450 microns in diameter (.45 mm), although the size may also be affected by the local circulation rates in the planetesimal ocean which are largely driven by temperature differential.

On earth tube worm communities are common surrounding hydrothermal vents, and may also have been common in planetesimal oceans of presolar Type I planetesimals which formed at lower temperatures and with lower chemical-activity rates than for Type II planetesimals. As sand settles out of suspension around hydrothermal vents in planetesimal oceans, tube worms extend their tubes to avoid burial. In the subsequent lithification and induration into quartzite, the former tube-worm tubes fossilized which may be misconstrued as Skolithos trace fossils. Skolithos are common in the Cambrian Chickies Formation which may be part of the hydrothermal mantle of the underlying, authigenic, Baltimore gneiss dome.

‘Black smoker’ chimney structures form over hydrothermal vents on earth in areas where tectonic plates are separating like at the mid-Atlantic ridge. These chimney structures can reach heights of 40 meters like ‘Godzilla’ in the Pacific Ocean before toppling over from their own weight and then regrowing, creating mounds of hydrothermal rock. Chimney structures may similarly form, topple and reform in planetesimal oceans, creating similar mounds of hydrothermal schist, but the forces causing chimney collapse in planetesimal oceans may be more seismic in nature as the sedimentary core progressively shrinks during diagenesis and lithification, leading to dramatic ‘comet quakes’.

At a distance from hydrothermal vents in planetesimal oceans, mineral crystals in exposures protected from burial by sediment may reach pegmatite size by crystallization, so proximity to hydrothermal vents may directly control mineral-grain size. In the Wissahickon schist terrain at distances of a kilometer or more from the sandstone and quartzite of hypothesized hydrothermal vents, pegmatites predominate. The largest crystalline masses of pegmatites are kilogram-scale blocks of plagioclase feldspar crystals. In the same vicinity, large populations of sheet muscovite with sheet sizes up to 10′s of square centimeters in area are frequently embedded in large masses of crystalline quartz.

The authigenic phase of planetesimal differentiation forms authigenic granite or gneiss, depending on the origin and composition of the precursor dust and ice. Highly-oxidized presolar dust and ice forms Type I planetesimals which differentiate to form authigenic gneiss-dome cores with schist and carbonate-rock mantles. Dust and ice condensed from solar wind enriched with planetary volatiles, on the other hand, have a much higher relative Gibbs free energy content and accrete to form Type II planetesimals. Type II planetesimals differentiate to form authigenic granite cores that may melt to form plutonic rock. Type II also form hydrothermal rock which may or may not reach the melting point to form basalt and pillow lava mantles around granite pluton cores. At lower temperatures in which the hydrothermal rock remains below the melting point, Type II planetesimals may form hydrothermal greenschist and dolomite, more similar to the mantles surrounding larger Type I gneiss-dome planetesimal cores.

The secondary ‘hydrothermal phase’ of comet differentiation is more heterogeneous than the earlier ‘authigenic phase’ of comet differentiation. Not only are hydrothermal vents localized, but the dissolved species in the hydrothermal fluids are more variable than the chondrite-normalized dust and ice precursor material that formed the authigenic core.

Planetesimal Stalactites:
Quartzite stalactites are hypothesized to have formed on ice ceilings overhanging hydrothermal vents in submerged salt-water oceans of contact-binary trans-Neptunian objects (TNOs) of the Kuiper belt. Quartz solubility is highly temperature sensitive, so authigenic quartz would precipitate and and grow through crystallization at the cold ice-water boundary, but the actual conditions causing stalactite growth are unknown. Perhaps quartzite stalactites form during ‘freeze out’ as the salt-water ocean gradually freezes solid, maintaining solute levels at or near saturation point, and perhaps the ice ceiling grows downward at the same rate as the stalactite such that the stalactite is essentially flush with the ice ceiling but imbedded up into it. These hypothesized planetesimal quartzite stalactites tend to be highly indurated with quartz (or silica gel) crystallization.

Hypothesized segments of linearly-striated quartzite stalactites which hung from the ice ceiling over hydrothermal vents of the Baltimore-gneiss-dome Oort cloud planetesimal. From the Wissahickon schist terrain, along the Bells Mill Road tributary to the Wissahickon Creek, Philadelphia, PA.

Another section of hypothesized quartzite comet stalactite from Philadelphia.

Hot black smokers in planetesimal oceans may precipitate and crystallize schist while cooler ‘white smokers’ may similarly form carbonate rock such as limestone and dolomite. The solubility of calcium and magnesium are inversely proportional to temperature due to their solubility dependence on pH. And the pH in turn is controlled by the inverse-temperature-dependent solubility of carbonic acid, hence the indirect temperature dependence for solubility of Ca and Mg by way of carbonic acid. So as the core temperature decreases over time, the pH also decreases due to higher concentrations of dissolved carbon dioxide which react to form carbonic acid. And higher levels of carbonic acid dissolve higher concentrations of calcium and magnesium. Then some mechanism is required to precipitate the calcium and magnesium carbonate that pours out of white-smoker hydrothermal vents into the comet ocean, since presumably even the relatively cool white smokers are substantially warmer than the planetesimal ocean into which they issue.

The outer mantle of the Baltimore gneiss dome alternates between layers of schist and carbonate rock before perhaps laying down a final thick layer of carbonate rock in the form of the Conestoga formation.


The premise for abiotic hydrocarbon creation in comet impacts originates with the high compressibility of carbon-bearing comet ices. In comet impacts, compressive heating of carbon ices such as methane and ethane cause endothermic chemical reactions (ECRs) that absorb energy and clamp the impact shock-wave pressure below the melting point of rock, greatly reducing the quantity of impactite melt-rock suevite.

In an impact shock wave, highly-compressible ices will undergo significantly-greater, adiabatic (PdV) compressional heating than less-compressible crystalline minerals, and greatly-elevated temperatures from compressive heating force ECRs. Experimentally, methane converts to long alkane chains and free hydrogen at 60 GPa and 4509 K (Li, Zhang et al., 2011).

Type II planetesimals that accreted from material with an elevated proportion of solar-plasma condensates may have a lower average oxidation state than comets with a more presolar composition, and one manifestation of this lower oxidation state may be elevated concentrations of hydrocarbon ices and carbon monoxide ice. Comets that have undergone ‘sublimation differentiation’ will have a layered composition with progressively lower melting-point ices in the outer layers. As internal heating from accretion, gravitational contraction and radioactive decay sublimes lower melting-point ices in the core, the sublimed vapors escape toward the surface which deposit at lower temperatures and pressures higher up.

A host of other ECRs also occur upon impact, but many of the reactants almost-immediately recombine as the shock-wave pressure relents since the reaction products would be intimately mixed at high temperatures and super-high pressures. The ECRs and subsequent exothermic reactions lower the power of impact, clamping the pressure of the impact shock wave and extending its duration by the subsequent recombination of the intimately-mixed ECR products. This lowering of the impact power due to ECRs may be largely responsible for preventing the melting and vaporization of terrestrial target rock and comet-core rock during comet impacts. And this absence of a melt-rock (suevite) signature may obscur comet impact craters from detection by geologists.

ECR products that liberate pure oxygen and other highly-reactive chalcogens and halogens would be particularly susceptible to spontaneous recombination; however, carbon-bearing ices creating long-chain hydrocarbons that liberate pure hydrogen would be far less likely to spontaneously recombine for several reasons. For one thing, liberated hydrogen may act as a protective buffer, scavenging more highly-reactive oxidizers even before the shock-wave pressure drops below the pressure permitting recombination of hydrocarbons and hydrogen. Also, the small size of the hydrogen molecule greatly increases its diffusion rate away from the hydrocarbons. So liberated hydrogen in ECRs of hydrocarbon ices may reduce the recombination of hydrocarbons and of other heavier and less-reactive ECR reaction products created in the impact shock wave. In this way, a portion of the impact energy may be sequestered in chemical energy in the form of petroleum, creating abiotic oil.

Secondary exothermic recombination of ECR products may be the cause of the ‘double flash’ in atmospheric testing of nuclear weapons (although shielding is the recognized origin of the double flash). The primary chemical reactions in atmospheric testing may involve nitrogen compounds (xO2 + N2 2NOx).

In the West we regard petroleum as a ‘fossil fuel’, but the Russians have a history of considering petroleum as having derived from deep-earth processes. Biotic methane may indeed result from chemoautotroph microbes in the deep hot biosphere, but coal and petroleum in sedimentary rock is likely of abiotic comet-impact origin.

For a comet falling from infinity toward the sun at earth’s orbit, the difference in kinetic energy between a comet hitting the planet head on in its orbit around the sun and a comet catching up with the planet is a factor of 19. So particularly, high-velocity comet impacts may create many times the proportion of ECR hydrocarbons as low-velocity impacts and of higher molecular weights as well. Coal and shungite may simply be metamorphism of heavy-molecular-weight impact oil and tar. In his book, The Deep Hot Biosphere, 2001, Thomas Gold suggests that despite its plant fossils, coal also may be abiotic from deep-earth sources.

The primary coal cyclothem of the Pennsylvanian Subperiod may have formed in a sub-continental-scale debris flow from a Carboniferous icy-body impact, forming the Michigan Basin impact crater, or perhaps binary impacts, forming both the Illinois basin and Michigan Basin. But if so, then icy body impacts apparently compress the ground rather than excavating it like rocky-iron impacts are known to do. Then a super debris apparently bulldozed the forest and soil as it went, creating the primary cyclothem of the Pennsylvanian Subperiod coal deposits. Reworking of the primary cyclothem may be responsible for subsequent cyclothems followed by deep burial and metamorphism into coal. The settling process formed the underlying ‘ganister’ or ‘seatearth’, strewn with stigmaria roots, stems and leaves and other vegetative matter while the lower-density impact hydrocarbons floated to the surface.

Carboniferous Period, Michigan-basin icy-body impact crater that may have formed the hydrocarbons of the Pennsylvanian Subperiod

Carboniferous Period, Michigan-basin icy-body impact crater that may have formed Pennsylvanian Subperiod endothermic hydrocarbons in the impact shockwave

Spontaneous re-reaction of ECR products in comet impacts on the Laurentide ice sheet at 12,900 B.P. may have provided the sustained thrust to launch chunks of the ice sheet into long trajectories above the atmosphere to form the Carolina bays along the East Coast of the United States. The orientation of the bays appear to point toward a pair of impact sites on upper Lake Michigan and lower Hudson Bay. The Nastapoka arc may be the rim of the Hudson Bay impact crater, and a similar but smaller arc is evident across from Sheboygan, Wisconsin on the opposite shore of Lake Michigan. The rough-terrain bedrock on the northeast rim of the two arcs may be target rock distorted by the impact.


Several common classes of meteorwrongs (often with apparent fusion crust) frequently show up at meteorite labs where they are denounced as probable industrial slag. Instead, they may be natural impact slag formed in small, secondary comet-ice impacts fractured off a comet, whether or not the main comet body impacts the Earth. (Technically, ‘slag’ is hot molten material while ‘dross’ is cold solidified slag, but slag is the more-commonly used term.)

The relative size ratio of secondary comet ice impacts compared to primary impacts may be the relative crater size between the 450 m Ivy Rock (impact-crater) quarry just north of Conshohocken, PA and the 450 Km Nastapoka Arc of the Hudson Bay.

This section particularly addresses secondary comet-ice impacts, likely with a carbon-monoxide ice component capable of chemically reducing iron oxides in cometary dust to metallic iron at super-high impact temperatures and pressures in the presence of target carbonate rock (limestone or dolomite) to act as a fluxing agent.

Oxygen may have been a limiting reagent in the formation of iron ores in secondary impact strikes, resulting in a (considerable) percentage of ‘waste rock’ laced with metallic-iron blebs trapped in vesicular basalt formed near the surface. Formation at or near the surface is revealed in the vesicles of the vesicular basalt containing metallic-iron blebs, indicating a lower oxygen fugacity for surface materials in impact strikes, perhaps due to increased exposure to carbon-monoxide. The small chunks of iron ore in the Ivy Rock quarry tailings that escaped notice are hematite and magnetite, as evaluated by streak testing, while the overlying vesicular basalt was undoubtedly considered to be worthless colonial iron-furnace slag.

Impact slag containing chunks of metallic iron may have formed in secondary impact events in Pennsylvania on the carbonate rock terrain of the Great Limestone Valley of Central Pennsylvania and the Conestoga Formation in Southeastern PA. Chunks of comet ice of sufficient size to arrive at interplanetary speed may create conditions similar to those industrial pig-iron furnaces which chemically reduce iron-oxides in comet dust to metallic iron with carbon monoxide, but at vastly-greater pressures, accelerating the reaction rates. Target carbonate rock may act as a fluxing or wetting agent, causing microscopic metallic-iron spherules to merge and form macroscopic-sized blebs of metallic iron embedded in basaltic-like impact slag. Magnets works well for finding impact slag containing metallic iron in the field and from roads, paths and railroad tracks where it’s been used as clean fill.

Iron-furnace slag from several historic iron furnaces in Pennsylvania were examined macroscopically and microscopically in order to rule out a man-made origin of hypothesized impact slag.

Iron Spherules (100X) in Iron-Furnace Slag from Joanna Furnace (1791-1898) Geigertown, PA

By comparison, suspected impact-slag (meteorwrongs) frequently contain millimeter to centimeter-sized metallic-iron blebs or larger which are orders of magnitude greater than the microscopic spherules in verifiable industrial iron-furnace slag. Only a catastrophic event (natural or man made) could ‘freeze’ molten globules of iron of this size against a density ratio between molten slag and molten iron of 2-1/2 times (250%). The catastrophic impact shock-wave that formed molten slag in the relatively-compressible comet ice by PdV heating nearly as quickly relents, catastrophically cooling the slag and freezing masses of metallic iron in basaltic slag rock.

The percentage of metallic iron in impact slag would be incredible for an industrial origin, particularly considering the 100 kg size of some of the native iron chunks associated with hypothesized impact slag. Additionally, the fractal shapes of ‘impact iron’ are strong evidence for a natural origin, and the occasional forged ‘mushrooming’ of some larger chunks are indicative of a natural catastrophe. But the largest recognized native iron deposits on Disko Island, Greenland and in the Siberian Traps are suggestive of primary impacts that delivered Greenland and Central Siberia to Earth as differentiated dwarf-planet rock.

Native iron ‘ring of flames’ may be the result of a super-intense lightening strike from the mushroom cloud raised by a secondary comet impact at “Ivy Rock Quarry” in Conshohocken, PA. The secondary impact in Conshohocken is hypothesized to have fragmented off the main comet body which may have formed the 450 km Dia Nastapoka arc impact crater, about 12,900 years ago.The lightening strike may have hit the prevalent pea-sized slag, melting and consolidating its high metallic-iron component which ran down to freeze in the fractal shape of a ring of flames’.The 45 kg, iron ‘sculpture’ has a 12 x 18 cm Dia hole in the center as would be expected from a super-intense lightening strike, since excess charge concentrates on the surface or perimeter of objects, including lightening bolts.’

Another argument against an industrial origin of slag meteorwrongs is the high degree of contamination of numerous elements that greatly-exceed, terrestrial crustal abundance, particularly for ore of the highest-abundance metallic element on the planet. Mass spec. analysis of a native-iron bleb from Pennsylvania impact slag, in ppm: >50% Fe, 321 Cr, 2150 Ni, 5200 Cu, 613 Mn, 97.7 Co, 7.2 Zn, 4.66 Ga, .4 Ge, .3 Se, 1.3 Zr, 2.96 Mb, 1.1 Ag, .05 In, 148 Sn, .05 Sb, 6.5 Ba, .72 Ce, .08 Nd, .01 Dy, .04 Re, .7 ppb Au, 4.01 Pb, .3 Th, .1 Li, .2 Bi. If impact iron has survived for 12,900 years, even in the relatively protected environment of an impact crater, metallic contaminants in the metallic iron may provide corrosion protection in the form of metallic oxides, rendering the iron essentially a stainless steel.

Section View of Comet-Impact-Slag Meteorwrong Containing Native-Iron Blebs

The precursor material of the impact slag does not suggest either chondritic or terrestrial crustal abundances, and the variability suggests a mixture of the two. Iridium is undetectable down to 2 ppb by INAA in 5 impact slag samples including an analysis of a metallic iron bleb.

Primary comet impact craters may go undetected due to endothermic chemical reactions occurring in hydrocarbon ices. Short-chain hydrocarbon ices may convert to longer-chain hydrocarbons in endothermic chemical reactions, clamping the impact shock wave below the melting point of terrestrial target rock, thereby masking comet impact craters from detection as such. Far-smaller secondary comet-ice impact craters may similarly avoid detection in lower-pressure endothermic reactions by converting metallic oxides to their metallic elements at super-high temperatures in localized, chemically-reducing carbon-monoxide atmospheres. The super-high temperatures sufficient to melt comet dust to form impact slag may occur principally in localized PdV heating of relatively-compressible comet ices compared to their relatively-incompressible mineral (target-rock) counterparts. In other words, comet ices may absorb sufficient meteorite-impact energy to largely protect the terrestrial target rock from melting. And a lack of target melt rock may obscure even a classical bowl-shaped impact crater from being identified as such. So the signature of secondary comet-ice impacts may be bowl-shaped lakes or gravel pits mixed with impact slag underlain with fractured target rock but with little or no melt-rock suevite. The impact slag component of gravel-pit impact quarries has undoubtedly been misconstrued as colonial iron-furnace slag. And finally, the gravel pits and the soil in the surrounding vicinity contain dramatically elevated levels of microscopic impact spherules.

Impact slag with metallic iron from carbonate-rock terrain has a high calcium oxide component which it, unfortunately, also shares with iron-furnace slag. A Calcium oxide content of 25% and 40% was measured in two mass-spec samples of impact slag (basalt) from Southeastern PA carbonate-rock terrain. Carbonate rock inclusions that fizz when exposed to vinegar are not uncommon in impact slag.

Impact slag containing metallic iron appears to be intermittently common across the carbonate rock belts of Southeastern Pennsylvania which can be granular (millimeter sized) up to boulder sized (1 meter). Impact slag quarried in 100 meter-scale impact craters is commonly used in clean fill applications in paths, roads and even as railroad ballast, confusing its natural origin. Granular-sized impact slag may be almost visually indistinguishable from granular iron-furnace slag except for its high metallic-iron content and the random-shaped chunks of metallic iron. A strong magnet will quickly differentiate impact slag from iron-furnace slag: easily picking up cubic-inch sized chunks of impact slag but only picking up sub-gram-sized chips of iron-furnace slag.

Impact slag, likely excavated from the nearby Ivy Rock quarry in Plymouth, PA 19428 (more often considered as a Conshohocken, PA address) has been used south of the quarry as land fill to extend the elevation some 5-10 acres above the creek along the triangle between Rt. 476 (Blue Route) and the Cross County Trail, in Conshohocken, that follows the creek below. The the landfill portion of the Cross County Trail park can be accessed at Fulton St. and Light St. in Conshohocken. The impact-slag landfill is readily apparent on Google Satellite due to its lack of plant cover because of the toxicity of impact slag to plant life. By comparison, iron furnace slag is valued as a fertilizer for its slow-release phosphate and lime content. In the Harrisburg Area, impact slag, likely from the quarry crater on Paxton St. in Swatara Township, PA 17111, has also been used as clean fill on both the East and West shores of the Susquehanna River in the greater Harrisburg Area.

Comet-Impact-Slag Dump Site in Plymouth, PA 19428 between Rt. 476 and Cross County Trail. Inset Image of Author next to slag pile.

Ivy Rock Quarry, Conshohocken Road, Conshohocken, PA 19428, site of likely comet-debris-ice impact. Note the probable layer of gray impact slag circled in red.

Quarry on Paxton St., Swatara Township, PA 17111, likely comet-debris-ice impact crater. Note the probable layer of gray impact slag circled in red.

When impact slag with a metallic-iron content was discovered in gravel pits, it was undoubtedly assumed to be colonial iron-furnace slag, and some of the material was experimentally melted (rather than smelted) in the Philadelphia and Harrisburg Areas to determine the quality of the iron, but apparently the high levels of contamination precluded its use in making steel. A small percentage of remelted impact slag — minus its metallic-iron component — can be found mixed with fire brick from experimental (ad hoc) furnaces, (by Phoenix Iron and Steel Co. in Phoenixville, PA). Both pristine impact slag and experimentally-melted impact slag was dumped down the south-side slope of French Creek in Phoenixville, PA and in other places as clean fill. Pristine impact slag is often found mixed with industrially-processed impact slag mixed with chunks of fire brick, but only pristine impact slag contains metallic-iron blebs and only pristine impact slag frequently displays a vanishingly-thin glassy-black or dull-black coating like fusion crust on unbroken surfaces.

Apparently during the Great Depression of the 1930s, a limited use was found for the brittle native iron in noncritical applications like window-sash counterweights. A small, failed remelting furnace still exists in Conshohocken (near where E. North Ln crosses the Schuylkill River Trail) constructed of fire brick, several cubic feet in volume, in which the metallic iron cooled and froze solid within the furnace itself before it could be extracted, creating a solid block of iron surrounded by fire brick. A 1939 Jefferson nickel was found in the immediate vicinity, suggesting the time frame. Another more-elaborate cottage-industry-sized cylindrical furnace about 4 foot dia (in the style of a Bessemer furnace) lies nearby. Across the river in West Conshohocken, PA immediately north of Bar Harbor Dr. near the railroad tracks, several window-sash counterweights were found next to fragments of irregular plates of cast iron 2-3 cm thick from iron that had pooled on the ground, likely after overfilling their casting forms.

The super-hot fireball created in secondary comet-ice impacts can impart an apparent or ‘pseudo fusion crust’ similar to ablated meteorites. Sometimes the pseudo fusion crust is evident on all sides, suggesting it formed while airborne. Washington University in St. Louis has “a photo gallery of Meteorwrongs”, of which a dozen or more appear to be impact slag of various types.

Low-grade Magnetite iron ore with trace fossils and vesicles as though formerly molten, but of unknown origin and formation mechanism.

Impact slag may form silicides outside carbonate rock terrain, creating other classes of meteorwrongs that are also frequently mistaken for meteorites. Some silicides are distinctly non-magnetic, even those with densities similar to that of high-grade iron ore, while other silicides may incorporate low-grade magnetite and be moderately ferromagnetic. If comet ice containing fine-grained nebular dust slams into wet sand at sufficient speed for compressive heating to thousands of Kelvins, the sand laden with comet fluids and dust may fuse to form low-grade magnetite, preserving trace fossils of buried organisms such as insect pupae. Then the almost as sudden pressure collapse following the initial shock wave causes expansive cooling which freezes the mass into microcrystalline rock that fractures with conchoidal or sub-conchoidal fracture patterns. The pressure collapse may also form a minor degree of steam voids (vesicular basalt), particularly near the surface of the impact slag.


Extinction events attributed to single or even multiple impactors are problematic due the immense size of the planet and the ‘horizon effect’ of its spherical shape. Additionally, the Coriolis effect effect tends to confine weather patterns to their own hemisphere, north or south. And yet, various impact signatures appear to coincide with a number of the largest extinction events. The horizon problem has been cited as a stumbling block for the Younger Dryas (YD) impact team who hypothesize that a bolide exploded over the Laurentide ice sheet about 12,800 BP, perhaps resulting in the extinction of some 33 megafaunal genera on the North American continent.

The YD comet may have impacted the Laurentide ice sheet over the Hudson Bay, possibly creating the Nastapoka-Arc crater; however, protection by two kilometers of the Laurentide ice sheet along with endothermic chemical reactions may have largely clamped the impact shock wave pressure below the melting point of terrestrial target rock, resulting in an absence of melt rock typically associated with meteorite impacts. And following the ice age, comet ejecta could be readily be attributed to diluvium from repeated ice-dam floods. Indeed, boulder fields may be wrongly attributed to ice fracturing of bedrock during glacial periods.

Comet ice may slough off in the atmosphere, creating secondary impacts of various dimensions and speeds which may be sufficient to fracture bedrock and create pyroclastic flows, lubricated with phyllosilicate slurries composed of aqueously-altered nebular dust. Once the comet clays have washed away, the boulders are left behind in a boulder field downhill from the impact site.

Pockmarks and striations on boulders in several isolated boulder fields across Pennsylvania are suggestive of high energy processes. Two discrete diabase boulder fields in Southeastern Pennsylvania, separated by more than 50 kilometers, have several distinctive properties in common that they do not share with loose diabase boulders between the boulder fields within the same Triassic diabase terrain. Ringing Rocks Park in Lower Black Eddy, PA and Ringing Rocks Park in Lower Pottsgrove Township, PA share several distinctive properties: 1) similar surface indentations best described as pockmarks, pot holes and striations, 2) relatively freshly-fractured edges almost free of weathering. Heavy weathering of diabase boulders outside the boulder field is characterized by surface ‘rot’, deep crevices, and exfoliation. 3) the ability to ring like bells when sharply struck with a hard object. The surface indentations may have been scoured out by high-velocity supercritical impact fluids, and the ultra-high impact pressures may have prestressed the surfaces of the boulders, creating rinds that perhaps act as phonon waveguides, leading to beat frequencies in the audible range from lower resonant frequencies.

Ringing Rock Surface Striations from the Scouring Action of Comet Fluids

In a comet-ice impact, supercritical fluids at super-high pressures and velocities may slice through target bedrock like water-jet cutting tools, creating boulder fields, assisted by the hypothesized rock-fracturing properties of high-pressure phyllosilicate slurries. Boulder fields of impact origin would tend to be random in location and generally unassociated with scree and talus slopes below steep cliff faces. Additionally, a widespread impact event would create boulder fields of the same age (boulder to boulder and boulder field to boulder field), but since the YD impact event occurred at the end ice age, boulder fields from this period have generally been attributed to exaggerated freeze-thaw cycles. So discrete boulder fields composed of rocks with uniform surface weathering that are not glacial moraine, scree or talus-slopes in origin, should be good candidates for an impact origin.

The direction of pyroclastic flow is always downhill, and if the downhill flow finds a gully with v-shaped sides to concentrate the boulders several layers deep, the boulders may act as a French drain to clear the phyllosilicate slurry and keep it clear from future sedimentation, remaining largely plant free for millennia. Eastern Pennsylvania alone boasts two Ringing Rocks boulder fields, two Blue Rocks boulder fields (near ‘Hawk Mountain’, Berks County Park) and Hickory Run boulder field (Hickory Run State Park), and numerous smaller boulder fields scattered throughout the ridge-and-valley terrain of the Appalachians.

Hickory Run boulders are scarred with pits, pot holes and striations, similar to Ringing Rocks, but the diabase of Ringing Rocks is well suited to preserving surface details from the scouring action of super-high-velocity comet fluids due to its particularly-tough and fine-grained structure. Blue Rocks boulder field, by comparison, is generally coarser-grained and more friable and brittle and overall less erosion resistant. Additionally, the Blue Rock boulders are for some reason more susceptible to bioerosion by lichen attack.

Hickory Run Boulder Field: A Pyroclastic flow of comet-debris impact boulders facilitated by the shear-thinning properties of phylosilicates

Hickory Run Boulder Field: A Pyroclastic flow of comet-debris impact boulders facilitated by the shear-thinning properties of phylosilicates

Pits, Pot Holes and Striations Caused by Comet-Debris Impact Scouring in Hickory Run Boulder Field

Pits, Pot Holes and Striations Caused by Comet-Debris Impact Scouring in Hickory Run Boulder Field

Extinction events separating geologic periods and shorter intervals are often correlated with unconformities and bright-line sedimentary layers, both of which could be attributed to impact events. The YD extinction event has its own bright-line layer known as the ‘black mat’. “The layer contains unusual materials (nanodiamonds, metallic microspherules, carbon spherules, magnetic spherules, iridium, charcoal, soot, and fullerenes enriched in helium-3) interpreted as evidence of an impact event, at the very bottom of the ‘black mat’ of organic material that marks the beginning of the Younger Dryas.” (Wikipedia: Younger Dryas impact hypothesis) None of the extinct megafauna are found above this layer, and the “black mat” has been found draped directly over megafaunal bones and Clovis implements, staining these items.


If the Appalachian Basin (AB) province (1,730 km long by between 30 to 500 km wide [Ryder, 2002]) is a large Type I binary-planetesimal ‘platform’ that spiraled in to merge and aqueously differentiate to form a platform core, it may have impacted in the Iapetus Ocean bringing the Ordovician period to an end in the Ordovician (O-S) extinction event, 450-440 Ma.

The penetration of the planetesimal core rock into the molten upper mantle of the earth likely caused planetesimal rock to melt, resulting in sinking plumes that subducted the ocean plate on all sides and caused the continental shields and platforms to converge, ultimately forming Pangaea.

The Iapetus Ocean may have closed to the west between the Appalachian Basin and Laurentia, perhaps creating the Illinois Basin where Laurentia subducted at the edge of the far deeper AB. To the east, the Caledonian orogeny (490-390 Ma) drew in Baltica and Avalonia, but this orogeny may or may not have predated the impact of the AB planetesimal. Next the Acadian orogeny (325-400 Ma) formed the Avalonia island arc. And finally Gondwana closed on Laurentia to the east in the Alleghenian orogeny, also known as the Appalachian orogeny, forming the supercontinent Pangea.

Hellas Planitia, also known as the Hellas Impact Basin on Mars may be comparable in size to the compound-comet core of the Appalachian Basin province, but significantly older. The elliptical features in the banded terrain or “taffy-pull terrain” of Hellas Basin on Mars may be layered gneiss, perhaps embedded in massive authigenic shale from a large compound-planetesimal impact from the period of the late heavy bombardment (LHB). Similarly, Belcher Islands in the Nastapoka Arc of the Hudson Bay may be far-younger, pristine granite-greenstone terrain from a far-smaller planetesimal impact, 12,900 B.P. Some of the banded terrain or “taffy-pull terrain” of Hellas Basin appears similar to the ridge-and-valley terrain of the Appalachian Mountains; although Mars experienced no additional buckling and folding from subsequent tectonic-plate collisions. If Hellas Planitia preserves Type I Kuiper belt planetesimals, some domes and zircons may be old, ca. 4.567 Ga, formed perhaps only 10′s of thousands of years before the LRN, but planetesimal Kuiper-belt rock of this age appears not to have survived on earth, or at least hasn’t been found. Some (or most) primary and compound planetesimals, however, may have accreted during the passage of the barycenter, and therefore have an age consistent with the LHB.

Smaller comet cores impacting on ocean plates may form ‘ring craters’ in which the comet core rock is fractured into a ring structure, typical of island rings that become progressively distorted into island chains. As an island chain approaches a continental plate, it may form an island arc, like Japan, and eventually getting tacked on to form a cordillera.

D’Entrecasteaux Islands near the eastern tip of New Guinea hosts the youngest gneiss domes on earth with 2-8 Ma eclogite-facies rocks (Little et al. 2011), suggesting that primary, Type I, Oort cloud planetesimals can remain undifferentiated indefinitely until activated by merging with Type II planetesimals. Differentiation activation may occur when primary Type I planetesimals collide with a smaller chemically-reduced Type II planetesimals. The impetus for Type I, planetesimal (aqueous) differentiation is likely the apsidal concentration of planetesimals by the solar system barycenter which stalled at 29,600 AU from the Sun when the close binary pair of Proxima likely merged around 542 Ma at 270,000 AU.

D’Entrecasteaux Islands are at the center of a complex of micro plates following a likely mid-Pleistocene compound-comet impact. On Java, Indonesia, volcanic tuff in the Bapang Formation [apparently coincident with Hawaiian and Canary Island lavas dated to 776 +/- 2 ka] records the mid Pleistocene geomagnetic reversal known as the Matuyama–Brunhes (MB) transition. In the Sangiran area, the last Homo erectus occurrence and the tektite level in the Sangiran are nearly coincident, just below the Upper Middle Tuff. “The stratigraphic relationship of the tektite level to the MB transition in the Sangiran area is consistent with deep-sea core data that show that the meteorite impact preceded the MB reversal by about 12 ka.” (Hyodo et al. 2011)

The antipodal point of the mid-Pleistocene compound-comet impact that became the D’Entrecasteaux Islands may have formed the volcanic Canary Islands, 776,000 years ago.
Canary Islands: 28.1° N, 15.4° W
D’Entrecasteaux Islands: 9.65° S, 150.70° E
The coordinate difference, displaced (18.45° lat. to the north, 13.9° long. to the east) from an exact antipode may be due to the faster relative NE motion of the Australian plate compared to the African plate over the last 3/4 million years.

Planetesimals formed by GI with late differentiating gneiss cores, such as those of D-Entrecasteaux Islands, were unlikely to have nucleated around an accretionary, Type II planetesimal core, therefore delaying aqueous differentiation until triggered by later planetesimal mergers, likely initiated by the stalled solar-system barycenter. So late-forming gneiss domes, significantly younger than 1000 Ma, should have mafic-rich granodiorite migmatite cores, whereas the central migmatite in gneiss domes cored with granite or highly-felsic pinkish leucosomes should contain some zircons with un-recrystallized cores not younger than 1000 Ma; although granodiorite (migmatite) need not be young and could be indefinitely old such as in Archean TTG terrains.

Other hypothesized dwarf-planet extinction-event impacts, with more detail forthcoming:
- End Ordovician: Appalachian Basin (and possibly much of Western Europe, excluding Scandinavia)
- End Silurian: Old Red Sandstone, Eastern Greenland, Scotland and most of Norway
- End Permian: Siberia
- End Triassic: China and South East Asia, minus North China
- Apian Extinction (145.5 Ma): Mongolia and North China
- End Cretaceous: Far East Russia east of Lena River, Alaska minus the north slope and minus the Insular Belt (Peninsular, Wrangellia and Alexander terrane and perhaps Yakutat, Prince William Chugach and Koyuduk, Nyak and Togiak terranes) and the North American Cordillera and the Caribbean Islands.  The Aleutian Islands (Insular Belt terrane) may trace the outline of the displaced impact crater.
- End Eocene: Mountainous terrain from Greece to Tibet, including Turkey, Iran, Northern Pakistan and Nepal (including the young gneiss domes of Greece, Tajikistan and Nepal)
- Middle Miocene disruption (14.5 Ma): Southern Japan with Mariana Trench tracing the impact-crater outline


But what about macroscopic fossils in hypothesized comet rock?

Perhaps the question should be reversed to ask why multicellular life forms shouldn’t evolve first in the oceans of trillions of Oort Cloud planetesimal oceans, perhaps a 100 million years or more before earth cooled sufficiently to even support liquid water. Even today, Jupiter’s icy moon Europa alone is thought to harbor a liquid ocean containing twice the volume of water of all earth’s oceans.

If the solar system barycenter promotes mergers of close-binary planetesimals and also (compound) mergers of solitary planetesimals, then shattering of planetesimal ice occurring in planetesimal mergers may efficiently share genetic information, including eggs of higher life forms, widely throughout the Oort cloud and galaxy. If peanut-shaped Oort cloud comets are ‘contact binaries’ formed from the (core-collapse) merger of close-binary pairs precipitated by gravitational collapse — as similar-sized Kuiper belt binaries are hypothesized to have formed (Nesvorny, Youdin and Richardson, 2010, Formation of Kuiper Belt Binaries by Gravitational Collapse ) — then perhaps the vast majority of Oort cloud planetesimals have merged and shattered, effectively sharing material among themselves.

Additionally, the 3 light-year diameter of the Oort cloud, particularly including the high surface area of shrapnel from planetesimal mergers, has swept out a considerable volume of the galaxy over its 18 galactic revolutions, or so, in 4-1/2 billion years, and the continual merger of close-binary pairs over the history of the solar system has likely maintained a considerable volume of liquid water for aqueous evolution, not merely static sharing. Then catastrophic, terrestrial comet impacts have similarly contaminated the earth at widely-spaced intervals, but since rock layers in differentiated planetesimal cores are laid down continuously, the intervals between impacts are masked.

If the Appalachian Basin Platform is a compound-planetesimal impact that brought on the Ordovician–Silurian (End Ordovician or O-S) extinction event, then the trilobites, brachiopods, gastropods, mollusks, echinoderms and etc. found in Ordovician limestone are of Oort cloud origin. And the planet matter found in late Silurian and younger deposits is terrestrial; however the (authigenic terrestrial?) mudstone of the Burgess ‘Shale’ Formation in the Canadian North American Cordillera may be terrestrial.

If photosynthetic plant life is a terrestrial adaption, then the slow emergence of flora in the Devonian compared to the earlier Cambrian Explosion of aquatic fauna may represent the explosive growth of multicellular life promoted in Oort cloud planetesimal oceans, likely accelerated by short-lived radionuclides from the luminous red nova (LRN) merger of Proxima’s, (the hypothesized companion star to the Sun, Proxima [Centauri]) close-binary pair.

At cold temperatures and low oxygen levels in comet oceans oxygen transport and exchange by hemocyanin and hemerythrin would be more efficient by hemoglobin, so hemoglobin may be a terrestrial adaption to higher oxygen levels facilitated by photosynthesis.

While the conodont might represent the height of chordata life forms in Oort cloud oceans, the cephalopod-mollusk octopus might represent the height of Oort cloud intelligence, and we may need go no further than Europa’s ocean to find higher life forms. And as in the deep hydrosphere on earth, aqueous planetesimal life forms may see and communicate with the light of bioluminescence.

Type II planetesimals are hypothesized to have formed from chemically-reduced dust and ice that condensed from super-intense solar wind during the common envelope phase of the central binary pair as they spiraled inward. High temperatures in chemically-reactive Type II planetesimal oceans may support only microbial life forms, perhaps mostly in the cool ranges near the ice water boundary. By comparison, primary and compound Type I planetesimals formed from more-highly-oxidized presolar dust and ice of the protoplanetary accretion disk may be the origin of multicellular Oort cloud life forms.

In a compromise between strictly terrestrial evolution and continuous panspermia, terrestrial evolution might be vastly accelerated by the catastrophic introduction of microorganisms containing alien DNA for higher traits from Oort cloud comets.

Interstellar infection of DNA sequences for higher traits might explain evolutionary spurts of new taxonomic ranks following extinction events caused by Oort cloud comet impacts, particularly if alien microorganisms tend to quickly succumb to native strains and thus have only a short time to infect higher organisms by genetic transformation, incorporating exogenous DNA into gametes prior to fertilization. Indeed, human DNA has been found inside gonorrhoeae bacteria.

In molecular biology transformation is genetic alteration of a cell resulting from the direct uptake, incorporation and expression of exogenous genetic material (exogenous DNA) from its surroundings and taken up through the cell membrane(s).
. . .
Transformation may also be used to describe the insertion of new genetic material into nonbacterial cells.

(Wikipedia: Transformation)

In their 2013 paper, “Life Before Earth”, Sharov and Gordon suggest that genetic complexity is a measure of the length of functional and non-redundant DNA sequence. They continue:

If we plot genome complexity of major phylogenetic lineages on a logarithmic scale against the time of origin, the points appear to fit well to a straight line (Sharov, 2006) (Fig. 1). This indicates that genome complexity increased exponentially and doubled about every 376 million years. Such a relationship reminds us of the exponential increase of computer complexity known as a “Moore’s law” (Moore, 1965; Lundstrom, 2003). But the doubling time in the evolution of computers (18 months) is much shorter than that in the evolution of life.

What is most interesting in this relationship is that it can be extrapolated back to the origin of life. Genome complexity reaches zero, which corresponds to just one base pair, at time ca. 9.7 billion years ago (Fig. 1). A sensitivity analysis gives a range for the extrapolation of ±2.5 billion years (Sharov, 2006). Because the age of Earth is only 4.5 billion years, life could not have originated on Earth even in the most favorable scenario (Fig. 2). Another complexity measure yielded an estimate for the origin of life date about 5 to 6 billion years ago, which is similarly not compatible with the origin of life on Earth (Jørgensen, 2007).

(Sharov and Gordon, 2013)

By this measure suggested by Sharov and Gordon, intelligent life is only beginning to emerge in our Galaxy. Then extrapolating beyond their paper, intelligent life likely takes the form of humanoids if genetic sharing by transformation has allowed life on Earth to keep pace with the Galactic genetic doubling rate of 376 million years. Genetic sharing would also seem to indicate that the highest (non mammal) aquatic intelligence, in the form of octopuses, may lag behind terrestrial intelligence by less than one doubling even though aquatic life is likely vastly more prevalent.


The orbital velocity of the earth makes a dramatic difference in the kinetic energy of comet impacts. For a comet falling from infinity toward the sun at earth’s orbit, the ratio of kinetic energy between comets hitting earth head-on in its orbit around the sun and those catching up with earth is a factor of 19, but most fall somewhere in between. (This calculation factors in earth’s gravity.)

Earth escape velocity: 11.2 km/s
Earth, orbital velocity: 29.8 km/s
Body falling from infinity towards the sun to a distance of 1 AU: 42.2 km/s (calculated from gravitational potential energy and checked by comparing velocity falling from infinity to the diameter of the sun with the escape velocity of the sun)

Running into the earth head on in its orbit:
42.2 km/s + 29.78 km/s = 71.98 km/s
71.98 * 71.98 + 11.19 * 11.19 = 5181.12 + 125.21 = 5306.33 km^2/s^2 (specific energy)

Catching up with earth in its orbit:
42.2 km/s – 29.78 km/s = 12.42 km/s
12.42 * 12.42 + 11.19 * 11.19 = 154.26 + 125.21 = 279.47 km^2/s^2 (specific energy)

Specific kinetic energy ratio between hitting the earth head-on and catching up with earth in its orbit:
5306.33 / 279.47 = 18.99

Dwarf comets having fallen through Proxima’s 3:1 ‘resonant nursery’ resonance will orbit CCW in the Oort cloud like the planets. If the solar-system barycenter (SS-barycenter) acts as an aphelia attractor that pins Oort cloud orbits in its vicinity to the SS-barycenter, then the 73.6 Myr orbit of the Sun around the SS-barycenter will align these pinned orbits with the Galactic core twice per orbit, causing the tidal effect of the Galactic core to gradually reduce their perihelia by extracting angular momentum from the orbits until they dip into the planetary realm of the inner solar system. And the dwarf planets most likely to collide with Earth will have perihelia on the order of 1 AU. These objects would catch up with Earth in its CCW orbit and impact at almost the lowest possible speed.

Finally, comet ice may undergo endothermic chemical reactions (ECRs) in comet impacts, mostly clamping the impact shock-wave pressure below the melting point of rock.


Shear thinning properties of phyllosilicates appear to promote earthquake-fault slippage, such as in the earthquake that caused the 11 March 2011 Japanese tsunami. Additionally, (certain) sheet-silicate slurries may promote rock fracturing as occur in stratovolcanoes. Inert and refractory phyllosilicates may subducted under continental plates where heat and pressure on phyllosilicate slurries may fracture the overlying plate, forming stratovolcanoes in which the (remote subducted and/or local devitrified) volcanic ash is the cause rather than the result of the eruption.

Additionally, phyllosilicates may have gotten injected into the upper mantle in large comet impacts which were expelled to form flood basalt. Evidence for rock fracturing properties of hot phyllosilicate slurries:

1) Volcanic ash (phyllosilicates) and steam are released by explosive stratovolcanoes that can blast away mountain sides.
2) Phyllosilicates are commonly used as drilling mud
3) Steam is used to fracture oil shale and shale has a high phyllosilicate content.
4) “Most mature natural faults contain a significant component of sheet silicate minerals within their core.” (Faulkner, Mitchell, Hirose, Shimamoto, 2009) Smectite was discovered in the fault that caused the 11 March 2011 Japanese tsunami which is thought to have facilitated the earthquake with a friction coefficient of .08. (Fulton et al. 2013)
5) Montmorillonite is the major component in non-explosive agents for splitting rock.

Finally, the shear thinning properties of phyllosilicates may contribute to catastrophic mud slides during heavy rains, liquefaction during earthquakes and high-velocity pyroclastic flows during volcanic eruptions of hot volcanic ash.


Anosova, J, Orlov, V. V. and Pavlova, N. A., (1994), Dynamics of nearby multiple stars. The Alpha Centauri system, Astronomy and Astrophysics, 292, 115-118 (1984)

Artymowicz, Pawel and Lubow, Stephen H., (1994), DYNAMICS OF BINARY-DISK INTERACTION. I. RESONANCES AND DISK GAP SIZES, The Astrophysical Journal, 421:651-667, 1994 February 1

Bogard, Donald D., Dixon, Eleanor T., Garrison, Daniel H., (2010), Ar-Ar ages and thermal histories of enstatite meteorites, Meteoritics & Planetary Science Volume 45, Issue 5, pages 723–742, May 2010

Boley, Aaron C., (2009), THE TWO MODES OF GAS GIANT PLANET FORMATION, 2009 ApJ 695 L53

Burnett, D. S. & Genesis Science Team, (2011), Solar composition from the Genesis Discovery Mission, PNAS May 9, 2011


Connelley, Michael S., Reipurth, Bo, Tokunaga, Alan T., 2008, The Evolution of the Multiplicity of Embedded Protostars. II. Binary Separation Distribution and Analysis, The Astonomical Journal, Volume 135, Issue 6, pp. 2526-2536 (2008)

Cox, Gutmann and Hines, (2002), Diagenetic origin for quartz-pebble conglomerates, Geology, April 2002

Currie, Thayne, (2005), Hybrid Mechanisms for Gas/Ice Giant Planet Formation, The Astrophysical Journal, 629:549-555, 2005 August 10

Dhital, Saurav, West, Andrew A., Stassun, Keivan G., Bochanski, John J., (2010), SLOAN LOW-MASS WIDE PAIRS OF KINEMATICALLY EQUIVALENT STARS (SLoWPoKES): A CATALOG OF VERY WIDE, LOW-MASS PAIRS, The Astronomical Journal 139 (2010) 2566-2586

Driscoll, Charles T. and Schecher, William D., The Chemistry of Aluminum in the Environment, (1990), Environmental Geochemistry and Health, Vol. 12, Numbers 1-2, 28-49


Eskola, Pentti Eelis, (1948), The problem of mantled gneiss, Feb. 1948 Quarterly Journal of the Geological Society, 104, 461-457

Faulkner, Mitchell, Hirose, Shimamoto, (2009), The Frictional Properties of Phyllosilicates at Earthquake Slip Speeds, EGU General Assembly 2009, held 19-24 April, 2009 in Vienna, Austria

Fournier, R. O., The behavior of silica in hydrothermal solutions, (1985), Reviews in Economic Geology, v. 2, pp. 45–59.

Frost, Carol D., Frost, B. Ronald, Kirkwood, Robert and Chamberlain, Kevin R., (2006), The tonalite-trondhjemite-grandiorite (TTG) to grandoriorite-granite (GG) transition in the late Archean plutonic rocks of the central Wyoming Province, Can. J. Earth Sci. 43: 1419-1444 (2006)

Fulton, P. M.; Brodsky, E. E.; Kano, Y.; Mori, J.; Chester, F.; Ishikawa, T.; Harris, R. N.; Lin, W.; Eguchi, N.; Toczko, S.; Expedition 343, 343T and KR13-08 Scientists, (2013), Low Coseismic Friction on the Tohoku-Oki Fault Determined from Temperature Measurements, Science 6 December 2013: Vol. 342 no. 6163 pp., 1214-1217 DOI:, 10.1126/science.1243641

Goddard Release No. 10-03, (2010), Most Earthlike Exoplanet Started out as Gas Giant, Goddard Release No. 10-03

Golimowski, David A., Schroeder, Daniel J., (1998), WIDE FIELD PLANETARY CAMERA 2 OBSERVATIONS OF PROXIMA CENTAURI: NO EVIDENCE OF THE POSSIBLE SUBSTELLAR COMPANION, The Astronomical Journal, 116:440-443, 1998 July

Hills, J. G., (1989), The Hard-Binary vs Soft-Binary Myth, Bulletin of the American Astronomical Society, Vol. 21, p.796

Howard, Andrew W et al., (2012), PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER, Andrew W. Howard et al. 2012 ApJS 201 15 doi:10.1088/0067-0049/201/2/15, and arXiv:1103.2541v1 [astro-ph.EP] 13 Mar 2011

Hyodo, Masayuki, Matsu’ura, Shuji, Kamishima, Yuko et al., (2011), High-resolution record of the Matuyama-Brunhes transition constrains the age of Javanese Homo erectus in the Sangiran dome, Indonesia, Proc Natl Acad Sci U.S.A. 2011 December 6, 108(49): 19563-19568

Johansen, Anders, Oishi, Jeffrey S., Low, Mordecai-Mark Mac, Klahr, Hurbert, Henning, Thomas and Youdin, Andrew, (2007), Rapid planetesimal formation in turbulent circumstellar disks, Letter to Nature 448, 1022-1025 (30 August 2007)

Joy, Katherine H., Zolensky, Michael E., Nagashima, Kazuhide, Huss, Gary R., Ross, D. Kent, McKay, David S., Kring, David A., (2012), Direct Detection of Projectile Relics from the End of the Lunar Basin–Forming Epoch, Science Online May 17, 2012 DOI: 10.1126/science.1219633

Kasliwal, Mansi M., Kulkarni, Shri R. et al., (2011), PTF10FQS: A LUMINOUS RED NOVA IN THE SPIRAL GALAXY MESSIER 99, Astrophysics, 27 Mar 2011

Kelling, Thorben, Wurm, Gerhard, (2013), Accretion through the inner edges of protoplanetary disks by a giant solid state pump, arXiv:1308.0921 [astro-ph.EP]

Kennedy, G. C., (1950), A portion of the system silica-water, E. con. Geol., 47. 629-653

Krot, Alexander N.; Amelin, Yuri;, Cassen, Patrick; Meibom, Anders, Young chondrules in CB chondrites from a giant impact in the early Solar System, (2005), Nature 436, 989-992 (18 August 2005)

Levine, Jonathan, Becker, Timothy A., Muller, Richard A., Renne, Paul R., (2005), 40Ar/39Ar dating of Apollo 12 impact spherules, Geophysical Research Letters, Vol. 32, L15201, doi:10.1029/2005GL022874, 2005

Levinson, Harold F. and Dones, Luke, (2007), Comet Populations and Cometary Dynamics, Chapter 31, Encyclopedia of the Solar System (edited by Lucy-Ann McFadden, Paul Robert Weissman and Torrence V. Johnson) 1st Ed. 1999, 2nd Ed. 2007, Academic Press

Li, Dafang, Zhang, Ping & Yan, Jun, (2011), Quantum molecular dynamics simulations for the nonmetal-metal transition in shocked methane, Condensed Matter Materials Science, 24 March 2011, arXiv:1012.4888v2

Lissauer, J. J., Stevenson, D. J., (2007), Formation of Giant Planets, Protostars and Planets V, B. Reipurth, D. Jewitt, and K. Keil (eds.), University of Arizona Press, Tucson, 951 pp., 2007., p.591-606

Little, T. A., Hacker, B. R., Gordon, S. M., Baldwin, S. L., Fitzgerald, P. G., Ellis, S., Korchinski, M., (2011), Diapiric exhumation of Earth’s youngest (UPH) ecogites in the gneiss domes of the D’Entrecasteaux Islands, Papua New Guinea, Tectonophysics 510 (2011) 39-68

Low, C; Lynden-Bell, D., (1976), The minimum Jeans mass or when fragmentation must stop, Monthly Notices of the Royal Astronomical Society, vol. 176, Aug. 1976, p. 367-390

Malavergne, Valérie, Toplis, Michael J., Berthet, Sophie, Jones, John, (2010), Highly reducing conditions during core formation on Mercury: Implications for internal structure and the origin of a magnetic field, Icarus, Volume 206, Issue 1, March 2010, Pages 199-209

Martin, H., Smithies, R. H., Moyen, J.-F. and Champion, D., (2005), An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution, Lithos, Volume 79, Issues 1-2, January 2005, Pages 1-24

Marty, B., Chaussidon, M., Wiens, R. C., Jurewicz, A. J. G., Burnett, D. S., (2011), A 15N-Poor Isotopic Composition for the Solar System As Shown by Genesis Solar Wind Samples, Science 24 June 2011 Vol. 332 no. 6037 pp. 1533-1536

Matese, J.J.; Witman, P.G.; Innanen, K.A. and Valtonen, M.J., (1998), Variability of the Oort Cloud Comet Flux: Can it be Manifest in the Cratering Record?, J. Andersen (ed.) Highlights of Astronomy, Volume 11A, 252-256

Matese, J. J., Whitman, P. G., Whitmire, D. P., (1999), Cometary evidence of a massive body in the outer Oort cloud, Icarus 141 (1999)

Matese, John, J., Whitmire, Daniel P., (2011), Persistent evidence of a jovian mass solar companion in the Oort cloud, Icarus 211 (2011) 926-938

McKeegan, K. D., Kallio, A. P. A., Heber, V. S., Jarzebinski, G., Mao, P. H., Coath, C. D., Kunihiro, T., Wiens, R. C., Nordholt, J. E., Moses Jr., R. W., Reisenfeld, D. B., Jurewicz, A. J. G., Murnett, D. S., (2011), The Oxygen Isotopic Composition of the Sun Inferred from Captured Solar Wind, Science 24 June 2011 Vol 332 no. 6037 pp. 1528-1532

de Meijer, R. J. and van Westrenen, W., (2010), An Alternative Hypothesis on the Origin of the Moon, arXiv:1001.4243v1 [astro-ph.EP]

Muller, R. A., Becker, T. A., Culler, T. S., and Renne, P. R., (2000), Solar System impact rates measured from lunar spherule ages, in Peucker-Ehrenbrink, B., and Schmitz, B., eds., Accretion of extraterrestrial matter throughout Earth’s history: New York, Kluwer Publishers, 466 p.

Mumma M. J., Gibb, E. L., Russo, N. Dello, DiSanti, M. A. Magee-Sauer, K., (2003), Methane in Oort cloud comets, Adv. Space Res., 31, 2563; Icarus 165 (2003) 391–406

Murthy, V. Rama & Hall, H. T., (1970), Physics of The Earth and Planetary Interiors, Volume 2, Issue 4, June 1970, Pages 276-282

NASA RELEASE : 12-425, (2012), NASA Astrobiology Institute Shows How Wide Binary Stars Form, RELEASE : 12-425 ammonium nitrate

Nesvorny, David, Youdin, Andrew N., Richardson, Derek C., (2010), Formation of Kuiper Belt Binaries by Gravitational Collapse, The Astronomical Journal 140 (2010) 785, doi:10.1088/0004-6256/140/3/785

Nittler, L. R., (2005), Calcium-Aluminum-Rich Inclusions Are Not Supernova Condensates, Chondrites and the Protoplanetary Disk ASP Conference Series, Vol ###, 2005

Nittler, Larry R., Hoppe, Peter, (2005), ARE PRESOLAR SILICON CARBIDE GRAINS FROM NOVAE ACTUALLY FROM SUPERNOVAE?, The Astrophysical Journal, 631:L89-L92, 2005 September 20

Nuth, J. A., Johnson, N. M., Elsila-Cook, J., and Kopstein, M., (2011), CARBON ISOTOPIC FRACTIONATION DURING FORMATION OF MACROMOLECULAR ORGANIC GRAIN COATINGS VIA FTT REACTIONS, 42nd Lunar and Planetary Science Conference (2011)

Ofek, E. O.; Kulkarni, S. R.; Rau, A.; Cenko, S. B.; Peng, E. W.; Blakeslee, J. P.; Cote, P.; Ferrarese, L;. Jordan, A.; Mei, S.; Puzia, T.; Bradley, L. D.; Magee, D.; Bouwens, R., The Environment of M85 optical transient 2006-1: constraints on the progenitor age and mass, (2007), arXiv:0710.3192 [astro-ph]

Ogliore, R. C., Huss, G. R., Nagashima, K, (2011), Incorporation of a Late-forming Chondrule into Comet Wild 2, arXiv:1112.3943v2 [astro-ph.EP] 30 Dec 2011

Palme, H. & O’Neill, Hugh St. C., (2003), Cosmochemical Estimates of Mantle Composition, Treatise On Geochemistry, Volume 2; pp. 1-38, ISBN: 0-08-044337-0

Patiño Douce A.E., Harris N., (1998), Experimental constraints on Himalayan Anatexis, Journal of Petrology, v. 39, no. 4, p. 689-710

Patiño Douce, Alberto E., (1999), What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?, pp 55-75, From: Castro, Fernandez, C. and Vigneresse, J. L. (eds) Understanding Granites: and Classical Techniques, The Geological Society of London

Peplowski, Patrick N., Evans, Larry G., Hauck II, Steven A., McCoy, Timothy J., Boynton, William V., Gillis-Davis, Jeffery J., Ebel, Denton S., Goldsten, John O., Hamera, David K., Lawrence, David J., McNutt Jr., Ralph L., Nittler, Larry R., Solomon, Sean C., Rhodes, Edjar A., Sprague, Ann L., Starr, Richard D., Stockstill-Cahill, Karen R., (2011), Radioactive Elements on Mercury’s Surface from MESSENGER: Implications for the Planet’s Formation and Evolution, Science Vol. 333, 30 September 2011

Pieters, C. M., Ammannito, E., Blewett, D. T., Denevi, B. W., De Sanctis, M. C., Gaffey, M. J., Le Corre, L., Li, J.-Y., Marchi, S., McCord, T. B., McFadden, L., A., Mittlefehldt, D. W., Nathues, A., Palmer, E., Reddy, V., Raymond, C. A., and Russell, C. T., (2012), Distinctive space weathering on Vesta from regolith mixing processes, Nature 491, 79-82 (01 November 2012), doi:10.1038/nature11534

Pinte, C., Menard, F., Manset, N., Bastien, P., (date?), TOMOGRAPHY OF THE INNER EDGE OF PROTOPLANETARY DISKS, published?

Podosek F. A. and Cassen P., (1994), Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula., Meteoritics, 29, 6–25

Rau, A.; Kulkarni, S. R.; Ofek, E. O.; Yan, L., Spitzer Observations of the New Luminous Red Nova M85 OT2006-1, (2007), The Astrophysical Journal, Volume 659, Issue 2, pp. 1536-1540

Rimstidt, J. D. and Barnes, H. L., (1980), The kinetics of silica-water reactions., Geochim. Cosmochim. Acta, Vol. 44 (11), pp.1683-1699

Rimstidt, J. D, (1997), Quartz solubility at low temperatures., Geochim. Cosmochim. Acta, Vol. 61 (13), pp.2553-2558

Ryder, R. T., (2002), Appalachian Basin Province (067), United States Geological Survey (USGS)

Sandeman, Clark, Scott and Malpas, (2000), The Kennack Gneiss of the Lizard Peninsula, Cornwall, SW England: commingling and mixing of mafic and felsic magmas accompanying Givetian continental incorporation of the Lizard ophiolite, Journal of the Geological Society; November 2000; v. 157; no. 6; p. 1227-1242

Schmidt, Burkhard C. & Keppler, Hans, (2002), Earth and Planetary Science Letters, Volume 195, Issues 3-4, 15 February 2002, Pages 277-290

Schroeder, Daniel J., Golminowski, David A., Brukardt, Ryan A., Burrows, Christopher J., Caldwell, John J., Fastie, William G., Ford, Holland C., Hesman, Bridgette, Kletskin, Ilona, Krist, John E., Royle, Patricia and Zubrowski, Richard A., (2000), A SEARCH FOR FAINT COMPANIONS TO NEARBY STARS USING THE WIDE FIELD PLANETARY CAMERA 2, The Astronomical Jorunal, 119:906-922, 2000 February

Schultz, A. B., Hart, H. M., Hershey, J. L., Hamilton, F. C., Kochte, M., Bruhweiler, F. C., Benedict, G. F., Caldwell, John, Cunningham, C., Wu, Nailong, Frantz, O. G., Keyes, C. D. and Brandt, J. C., (1998), A POSSIBLE COMPANION TO PROXIMA CENTAURI, The Astronomical Journal, 115:345-350, 1998 January

Sharov, Alexei A., Gordon, Richard, (2013), Life Before Earth, arXiv:1304.3381 [physics.gen-ph]

Shi, Ji-Ming, Krolik, Julian H., Lubow, Stephen H., Hawley, John F., (2012), Three Dimensional MHD Simulation of Circumbinary Accretion Disks: Disk Structures and Angular Momentum Transport, arXiv:1110.4866v2 [astro-ph.HE] 7 Feb 2012

Staal, C. R., Williams, P. F., (1983), Evolution of a Svecofennian-mantled gneiss dome in SW Finland, with evidence for thrusting, Tectonophysics, Volume 74, Issues 3–4, 20 April 1981, Pages 283-304

Tohline, J. E., Cazes, J. E., Cohl, H. S., (1999), THE FORMATION OF COMMON-ENVELOPE, PRE-MAIN-SEQUENCE BINARY STARS, Astrophysics and Space Science Library Volume 240, 1999, pp 155-158

Tomida, Kengo, Tomisaka, Kohji, Tomoaki, Matsumoto, Yasunori, Hori, Satoshi, Okuzumi, Machida, Masahiro N., and Saigo, Kazuya, Arxiv 2012 (Draft Version January 1, 2013), RADIATION MAGNETOHYDRODYNAMIC SIMULATIONS OF PROTOSTELLAR COLLAPSE:
PROTOSTELLAR CORE FORMATION, arXiv:1206.3567V2 [astro-ph.SR] 28 Dec 2012

Urtson, Kristjan, (2005), Melt segregation and accumulation: analogue and numerical modelling approach, MSc. Thesis, University of Tartu

Wertheimer, Jeremy G. and Laughlin, Gregory, 2006, Are Proxima and Alpha Centauri Gravitationally Bound?, The Astronomical Journal, 132:1995-1997, 2006 November

Wielen, Fuchs and Dettbarn, (1996), On the birth-place of the Sun and the places of formation of other nearby stars, Astron. Astrophys. 314, 438

Yin, An, (2004), Gneiss domes and gneiss dome systems, Geological Society of America Special Paper 380
by Dave Carlson

P.S. Soliciting contributions, criticism and collaborators. Pseudonyms are acceptable and assistance will be attributed.

Posted in Uncategorized | 1 Comment